
INTERNATIONAL
STANDARD

IEC
61131-5

First edition
2000-11

Programmable controllers –

Part 5:
Communications

Automates programmables –

Partie 5:
Communications

Reference number
IEC 61131-5:2000(E)

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the
60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example,
edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the
base publication incorporating amendment 1 and the base publication incorporating
amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC,
thus ensuring that the content reflects current technology. Information relating to
this publication, including its validity, is available in the IEC Catalogue of
publications (see below) in addition to new editions, amendments and corrigenda.
Information on the subjects under consideration and work in progress undertaken
by the technical committee which has prepared this publication, as well as the list
of publications issued, is also available from the following:

• IEC Web Site (www.iec.ch)

• Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/catlg-e.htm) enables
you to search by a variety of criteria including text searches, technical
committees and date of publication. On-line information is also available on
recently issued publications, withdrawn and replaced publications, as well as
corrigenda.

• IEC Just Published

This summary of recently issued publications (www.iec.ch/JP.htm) is also
available by email. Please contact the Customer Service Centre (see below) for
further information.

• Customer Service Centre

If you have any questions regarding this publication or need further assistance,
please contact the Customer Service Centre:

Email: custserv@iec.ch
Tel: +41 22 919 02 11
Fax: +41 22 919 03 00

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

INTERNATIONAL
STANDARD

IEC
61131-5

First edition
2000-11

Programmable controllers –

Part 5:
Communications

Automates programmables –

Partie 5:
Communications

PRICE CODE

 IEC 2000  Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission 3, rue de Varembé Geneva, Switzerland
Telefax: +41 22 919 0300 e-mail: inmail@iec.ch IEC web site http://www.iec.ch

X
For price, see current catalogue

 Commission Electrotechnique Internationale
 International Electrotechnical Commission

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

– 2 – 61131-5  IEC:2000(E)

CONTENTS

Page

FOREWORD .. 6

Clause

1 Scope .. 8

2 Normative references ... 8

3 Definitions.. 9

4 Symbols and abbreviations ... 11

5 Models ... 11

5.1 PC network communication model ... 11

5.2 PC functional model .. 12

5.3 PC hardware model... 14

5.4 Software model ... 14

6 PC communication services.. 15

6.1 PC subsystems and their status .. 15

6.2 Application specific functions... 22

7 PC communication function blocks ... 28

7.1 Overview of the communication function blocks ... 28

7.2 Semantic of communication FB parameters ... 29

7.3 Device verification... 34

7.4 Polled data acquisition .. 38

7.5 Programmed data acquisition .. 41

7.6 Parametric control ... 51

7.7 Interlocked control .. 54

7.8 Programmed alarm report ... 61

7.9 Connection management... 69

7.10 Example for the use of communication function blocks .. 73

8 Compliance and implementer specific features and parameters 76

8.1 Compliance... 76

8.2 Implementation specific features and parameters .. 77

Annex A (normative) Mapping to ISO/IEC 9506-5.. 78

Annex B (normative) PC behavior using ISO/IEC 9506-2... 98

Figure 1 – Scope of this part of IEC 61131 .. 8

Figure 2 – PC communication model... 12

Figure 3 – Programmable controller functional model .. 13

Figure 4 – Programmable controller hardware model... 14

Figure 5 – PC software model ... 15

Figure 6 – Programmable controller power supply ... 19

Figure 7 – Type description of status information .. 21

Figure 8 – Interlocked control timeline... 24

Figure 9 – Function REMOTE_VAR .. 31

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

61131-5  IEC:2000(E) – 3 –

Figure 10 – Principle of status signalling ... 32

Figure 11 – Timing diagram of the ERROR and STATUS outputs .. 32

Figure 12 – STATUS function block .. 34

Figure 13 – USTATUS function block .. 35

Figure 14 – Timing diagram of the STATUS function block .. 35

Figure 15 – State diagram of STATUS function block .. 36

Figure 16 – State diagram of USTATUS function block.. 37

Figure 17 – READ function block .. 39

Figure 18 – Timing diagram of READ function block .. 39

Figure 19 – State diagram of READ function block .. 40

Figure 20 – Programmed data acquisition data flow .. 41

Figure 21 – USEND function block .. 42

Figure 22 – URCV function block .. 42

Figure 23 – Timing diagram of USEND and URCV function blocks .. 43

Figure 24 – State diagram of USEND function block.. 43

Figure 25 – State diagram of URCV function block .. 45

Figure 26 – BSEND function block .. 47

Figure 27 – BRCV function block .. 48

Figure 28 – Timing diagram of BSEND and BRCV function blocks ... 48

Figure 29 – State diagram of BSEND function block .. 49

Figure 30 – State diagram of BRCV function block .. 50

Figure 31 – WRITE function block... 52

Figure 32 – Timing diagram of WRITE function block .. 53

Figure 33 – State diagram of WRITE function block .. 53

Figure 34 – SEND function block .. 55

Figure 35 – RCV function block... 56

Figure 36 – Timing diagram of SEND and RCV function blocks ... 57

Figure 37 – State diagram of SEND function block .. 58

Figure 38 – State diagram of RCV function block .. 60

Figure 39 – NOTIFY function block ... 62

Figure 40 – ALARM function block .. 63

Figure 41 – Timing diagram of ALARM function block ... 64

Figure 42 – State diagram of NOTIFY function block ... 65

Figure 43 – State diagram of ALARM function block .. 67

Figure 44 – CONNECT function block ... 69

Figure 45 – Timing diagram of CONNECT function block .. 70

Figure 46 – State diagram of CONNECT function block ... 71

Figure 47 – Example in function block diagram language .. 76

Table 1 – Status presenting entities .. 16

Table 2 – PC summary status ... 17

Table 3 – Status of I/O subsystem .. 18

Table 4 – Status of processing unit ... 18

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 4 – 61131-5  IEC:2000(E)

Table 5 – Status of power supply .. 19

Table 6 – Status of memory .. 19

Table 7 – Status of communication subsystem .. 20

Table 8 – Status of implementer specific subsystem ... 20

Table 9 – Presentation of status information ... 21

Table 10 – Device verification features ... 23

Table 11 – Data acquisition features ... 23

Table 12 – Control features .. 24

Table 13 – Alarm reporting features .. 25

Table 14 – Startable and stoppable units .. 25

Table 15 – Meaning of I/O State ... 26

Table 16 – I/O state .. 26

Table 17 – Execution and I/O control features ... 26

Table 18 – Loadable units ... 27

Table 19 – Application program transfer features .. 27

Table 20 – Connection management features ... 28

Table 21 – Overview of the communication function blocks ... 28

Table 22 – Semantic of communication FB parameters ... 30

Table 23 – Values of the SCOPE parameter.. 31

Table 24 – Value and interpretation of the STATUS output .. 33

Table 25 – Transitions of the STATUS state diagram .. 36

Table 26 – Action table for STATUS state diagram.. 36

Table 27 – Transitions of USTATUS state diagrams.. 37

Table 28 – Action table of USTATUS state diagram .. 37

Table 29 – Transitions of the READ state diagram .. 40

Table 30 – Action table for READ state diagram.. 41

Table 31 – Transitions of the USEND state diagram .. 44

Table 32 – Action table for USEND state diagram ... 44

Table 33 – Transitions of URCV state diagrams .. 45

Table 34 – Action table of URCV state diagram... 46

Table 35 – Transitions of the BSEND state diagram .. 49

Table 36 – Action table for BSEND state diagram ... 50

Table 37 – Transitions of BRCV state diagrams .. 51

Table 38 – Action table of BRCV state diagram ... 51

Table 39 – Transitions of the WRITE state diagram .. 54

Table 40 – Action table for WRITE state diagram .. 54

Table 41 – Transitions of the SEND state diagram .. 58

Table 42 – Action table for SEND state diagram.. 59

Table 43 – Transitions of RCV state diagrams .. 60

Table 44 – Action table of RCV state diagram ... 61

Table 45 – Transitions of the NOTIFY state diagram ... 65

Table 46 – Action table for NOTIFY state diagram... 66

Table 47 – Transitions of the ALARM state diagram .. 68

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

61131-5  IEC:2000(E) – 5 –

Table 48 – Action table for ALARM state diagram ... 68

Table 49 – Transitions of the CONNECT state diagram ... 72

Table 50 – Action table for CONNECT state diagram .. 73

Table 51 – Table titles and relevant tables for compliance... 76

Table 52 – Implementation specific features and parameters .. 77

Table A.1 – Type description mapping .. 81

Table A.2 – Mapping of the SCOPE and SC_ID parameter .. 81

Table A.3 – Size prefix of direct representation ... 82

Table A.4 – Transition mapping of the STATUS state diagram .. 84

Table A.5 – Action mapping for STATUS state diagram... 84

Table A.6 – Transition mapping of USTATUS state diagram .. 84

Table A.7 – Action mapping of USTATUS state diagram ... 84

Table A.8 – Transition mapping of the READ state diagram... 85

Table A.9 – Action mapping for READ state diagram... 85

Table A.10 – Transition mapping of the USEND state diagram .. 86

Table A.11 – Action mapping for USEND state diagram .. 86

Table A.12 – Transition mapping of URCV state diagram .. 86

Table A.13 – Action mapping for URCV state diagram... 87

Table A.14 – Transition mapping of the BSEND state diagram .. 87

Table A.15 – Action mapping for BSEND state diagram... 88

Table A.16 – Transition mapping of BRCV state diagram .. 88

Table A.17 – Action mapping for BRCV state diagram ... 89

Table A.18 – Transition mapping of the WRITE state diagram ... 90

Table A.19 – Action mapping for WRITE state diagram ... 90

Table A.20 – Transition mapping of the SEND state diagram... 90

Table A.21 – Action mapping for SEND state diagram ... 91

Table A.22 – Transition mapping of RCV state diagram... 91

Table A.23 – Action mapping of RCV state diagram .. 92

Table A.24 – Transition mapping of the NOTIFY state diagram.. 94

Table A.25 – Action mapping for NOTIFY state diagram.. 94

Table A.26 – Transition mapping of the ALARM state diagram .. 95

Table A.27 – Action mapping for ALARM state diagram... 95

Table A.28 – Transitions of the CONNECT state diagram.. 96

Table A.29 – Action mapping for CONNECT state diagram.. 96

Table A.30 – Implementation specific features and parameters ... 97

Table B.1 – CreateProgramInvocation service defaults.. 98

Table B.2 – Program Invocation service defaults for I/O State parameter 98

Table B.3 – Implementation specific features and parameters ... 99

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 6 – 61131-5  IEC:2000(E)

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PROGRAMMABLE CONTROLLERS –

Part 5: Communications

FOREWORD

1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, the IEC publishes International Standards. Their preparation is
entrusted to technical committees; any IEC National Committee interested in the subject dealt with may
participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization
for Standardization (ISO) in accordance with conditions determined by agreement between the two
organizations.

2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical committee has representation
from all interested National Committees.

3) The documents produced have the form of recommendations for international use and are published in the form
of standards, technical specifications, technical reports or guides and they are accepted by the National
Committees in that sense.

4) In order to promote international unification, IEC National Committees undertake to apply IEC International
Standards transparently to the maximum extent possible in their national and regional standards. Any
divergence between the IEC Standard and the corresponding national or regional standard shall be clearly
indicated in the latter.

5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with one of its standards.

6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject
of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61131-5 has been prepared by subcommittee 65B: Devices, of IEC
technical committee 65: Industrial-process measurement and control.

The text of this standard is based on the following documents:

FDIS Report on voting

65B/411/FDIS 65B/420/RVD

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 3.

This part should be read in conjunction with the other parts of IEC 61131. IEC 61131 consists
of the following parts under the general title: Programmable controllers.

Part 1:1992, General information.

Part 2:1992, Equipment requirements and tests.

Part 3:1993, Programming languages.

Part 4:1994, User guidelines (published as technical report IEC TR 61131-4)

Part 5:2000, Communications

Part 8:2000, Guidelines for the application and implementation of programming languages
(published as technical report IEC TR 61131-8)

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 7 –

Annexes A and B form an integral part of this standard.

Annex C is for information only.

Where a conflict exists between this and other IEC standards (except basic safety standards),
the provisions of this standard should be considered to govern in the area of programmable
controllers and their associated peripherals.

The committee has decided that the contents of this publication will remain unchanged until
2006. At this date, the publication will be

• reconfirmed;

• withdrawn;

• replaced by a revised edition, or

• amended.

A bilingual version of this standard may be issued at a later date.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 8 – 61131-5  IEC:2000(E)

PROGRAMMABLE CONTROLLERS –

Part 5: Communications

1 Scope

This part of IEC 61131 specifies communication aspects of a programmable controller. It
specifies from the viewpoint of a PC how any device can communicate with a PC as a server
and how a PC can communicate with any device. In particular, it specifies the behavior of the
PC as it provides services on behalf of other devices and the services the PC application
program can request from other devices. It is not intended to specify how any device can
communicate with any device using a PC as a router or gateway. The behavior of the PC as a
communication client and server is specified independent of the particular communication
subsystem, but the communication functionality may be dependent on the capabilities of the
communication subsystem used.

Any device PC Any device

Scope of IEC 61131-5

IEC 2247/2000

Figure 1 – Scope of this part of IEC 61131

The scope of this part is a subset of the "communication model" shown in figure 2 of
IEC 61131-3; namely figures 2c and 2d are included in the scope of this part. Additionally, the
means defined in this part of IEC 61131 may be used for communications within a program or
between programs.

The mapping of the PC behavior to some particular communications subsystems is provided in
the annexes.

2 Normative references

The following normative documents contain provisions which, through reference in this text,
constitute provisions of this part of IEC 61131. For dated references, subsequent amendments
to, or revisions of, any of these publications do not apply. However, parties to agreements
based on this part of IEC 61131 are encouraged to investigate the possibility of applying the
most recent editions of the normative documents indicated below. For undated references, the
latest edition of the normative document referred to applies. Members of ISO and IEC maintain
registers of currently valid International Standards.

IEC 60050-351:1998, International Electrotechnical Vocabulary – Part 351: Automatic control

IEC 61131-1:1992, Programmable controllers – Part 1: General Information

IEC 61131-2:1992, Programmable controllers – Part 2: Equipment requirements and tests

IEC 61131-3:1993, Programmable controllers – Part 3: Programming languages

ISO/IEC 2382-1:1993, Information technology – Vocabulary – Part 1: Fundamental terms

ISO/IEC 9506-1:1990, Industrial automation systems – Manufacturing Message Specification –
Part 1: Service definition

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 9 –

ISO/IEC 9506-2:1990, Industrial automation systems – Manufacturing Message Specification –
Part 2: Protocol specification

3 Definitions

For the purpose of this part of IEC 61131, the following definitions apply.

This part of IEC 61131 is based on the concepts of parts 1 to 3 of IEC 61131 and makes use of
the following terms defined in other international standards.

Definitions from other publications

IEC 60050-351

control

monitoring

IEC 61131-1

application program (2.1)

application program archiving (4.6.4)

cold restart (2.56)

input (2.25)

main processing unit (2.32)

modifying the application program (4.6.2.6)

output (2.40)

programmable controller (2.50)

programmable controller system (2.51)

testing the application program (4.6.2.5)

warm restart (2.56)

IEC 61131-3

access path (1.3.2)

direct representation (1.3.23)

invocation (1.3.43)

program (verb, 1.3.60)

sub-element (2.3.3.1)

ISO/IEC 2382-1

data

ISO/IEC 9506-1

client

download

event (clause 15)

server

uninterruptible variable access (12.1.1.1)

upload

variable

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

– 10 – 61131-5  IEC:2000(E)

Definitions of this part

3.1
alarm
event which signals a specific condition

3.2
data acquisition
collection of data for the purpose of process monitoring and report generation

3.3
direct operator interface
when the client can communicate to the operator interface via the communication system with
no application program interaction

3.4
device verification
allows other devices to determine if the PC is able to perform its intended function in the
control system

3.5
health
the health of a PC or its subsystems is specified by returning one, and only one, of the three
possible values. They are, in order of decreasing health: GOOD, WARNING and BAD

3.6
interlocked control
control through the synchronization of data exchanges between two parties. At various points in
time, one party is waiting for the other party to deliver some expected data

3.7
local
internal to the PC; opposite of remote

3.8
parametric control
control by the client writing to control variables residing in the PC

3.9
processing unit
part of the main processing unit. It is the portion of a PC system which is responsible for the
storage of the application program and data and the execution of the application program.
A PC system has one or more processing units

3.10
program verification
testing of a PC application program to verify that it performs the function(s) it was designed to
do in the process environment

3.11
recipe
description of procedures, or data for those procedures, or both, for making a product which
uses the process or machinery that the controller is attached to, which is different from a
previous product

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

61131-5  IEC:2000(E) – 11 –

3.12
remote
external to the PC; opposite of local

3.13
state
the state of the PC system is indicated by a list of attributes, each of which may be TRUE or
FALSE. Zero, one, or more of these attributes may be TRUE at the same time

3.14
unsolicited
performed without an explicit request

4 Symbols and abbreviations

These are some abbreviations frequently used in this part of IEC 61131. These terms are
defined or referenced in clause 3 of this part of IEC 61131.

CFB Communication function block

FB Function block

I/O Input and output

IEC International Electrotechnical Commission

ISO International Organization for Standardization

MMS Manufacturing Message Specification, ISO/IEC 9506-1 and ISO/IEC 9506-2

OSI Open Systems Interconnection

PADT Programming and debugging tool

PC Programmable controller

PU Processing unit

5 Models

This clause specifies the models which are used in the remainder of this part of IEC 61131.

5.1 PC network communication model

A programmable controller supplies some specific application functions to the rest of the
control system. It may also request functions from other programmable controllers. The
communication functions defined in this part of IEC 61131 are based on a communication
subsystem that can report communication errors to the signal processing function of the PC
(see 5.2).

The following diagram illustrates the devices in a communication network, showing three
possible devices that request PC functions (clients) from PC 2. The two highlighted PCs are in
the scope of this part of IEC 61131.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 12 – 61131-5  IEC:2000(E)

Communication system

Supervisory
controller

Other-end system
which talks to PC

Programmable
controller 1

Programmable
controller 2

Client

Client Client Server

Machinery or
process

IEC 2248/2000

NOTE From the communication viewpoint the 'supervisory controller' and the 'other-end system which talks to PC'
mentioned in this figure exhibit the same behavior to a PC communication server, i.e., they submit requests to the
PC2.

Figure 2 – PC communication model

A PC may use its client function to communicate with any device if it behaves like a PC.

5.2 PC functional model

A PC consists of several functions (see figure 3). For a PC within the scope of this part of
IEC 61131, at least one communication function is present.

The following diagram is taken from IEC 61131-1, figure 1. It is designed to illustrate some of
the subsystems of a typical PC.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 13 –

Other systems

Mains
supply

Communication
functions

Power
supply
function

Signal
processing
function

MAN-MACHINE
INTERFACE
functions

debugging, and
testing functions

Programming,

OPERATING
SYSTEM
functions

PROGRAM
storage functions

APPLICATION

functions

DATA
storage

PROGRAM
execution

APPLICATION

INTERFACE functions to
sensors and actuators

Machine / Process

Operator

APPLICATION
programmer

IEC 2249/2000

Figure 3 – Programmable controller functional model

There is a function that is part of the PC system, but usually external to the PC itself, known as
the programming and debugging tool (PADT). The PADT is modelled as interacting with the PC
via the communications function.

The Interface Function to Sensors and Actuators can have I/O which are local or remote to the
Main Processing Unit (see 5.3 for the hardware model). The Interface Function to Sensors and
Actuators has two attributes for each Application Program which defines how the PC is
monitoring and controlling the machine/process. The input attribute has the following states:

• inputs provided to the Application Program are being supplied by the sensors,

• inputs provided to the Application Program are being held in the current state.

The output attribute has the following states:

• the actuators are being controlled by the Application Program,

• the actuators are being held in the current state.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 14 – 61131-5  IEC:2000(E)

5.3 PC hardware model

The following figure shows the PC hardware model. It shows the modules that make up a PC.
A PC subsystem consists of one or more modules. The following figure corresponds to figure
B.1 of IEC 61131-1 and figure 1 of IEC 61131-2.

Memory(ies)
and

processing unit(s)

Input module(s)

Output module(s)

Communication module(s)

Power supply unit(s)

Main processing unit

Remote I/O station(s)

Peripherals

Implementer-specific subsystem(s)

IEC 2250/2000

Figure 4 – Programmable controller hardware model

5.4 Software model

Figure 5 shows the PC software model defined in IEC 61131-3, figure 1. It illustrates the basic
high-level language elements of the PC programming languages and their interrelationships.
These consist of elements which are programmed using the languages defined in IEC 61131-3,
i.e. programs and function blocks; and configuration elements, namely, configurations,
resources, tasks, global variables, and access paths, which support the installation of
programmable controller programs into programmable controller systems.

A configuration is the language element which corresponds to a programmable controller
system as defined in IEC 61131-1. A resource corresponds to a "signal processing function"
and its "man-machine interface" and "sensor and actuator interface" functions (if any) as
defined in IEC 61131-1. A configuration contains one or more resources, each of which
contains one or more programs executed under the control of zero or more tasks. A program
may contain zero or more function blocks or other language elements as defined in
IEC 61131-3.

Configurations and resources can be started and stopped via the "operator interface",
"programming, testing, and monitoring", or "operating system" functions defined in
IEC 61131-1. The mechanisms for the starting and stopping of configurations and resources
via communication services are defined in this part of IEC 61131.

Programs, resources, global variables, access paths (and their corresponding access
privileges), and configurations can be loaded or deleted by the "communication function"
defined in IEC 61131-1. The loading or deletion of a configuration or resource shall be
equivalent to the loading or deletion of all the elements it contains.

Access paths and their corresponding access privileges allow to access variables of a PC via
communication services.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 15 –

Configuration

Resource

Task Task

Program Program

FB FB

Resource

Task Task

Program Program

FB FB

Global and directly

Access paths

Execution control path

Variable access paths

FB Function block

Variable

or

represented variables

Communication function

NOTE 1 This figure is illustrative only. The graphical representation is not normative.

NOTE 2 In a configuration with a single resource, the resource need not be explicitly represented.

Figure 5 – PC software model

6 PC communication services

This clause describes the concept of status information of a PC and provides a specification of
the services the PC provides to the control system via the communication subsystem. (The
next clause specifies how the PC application program can use the communication subsystem
to interact with other devices.)

6.1 PC subsystems and their status

A PC can provide status, which includes state information and fault indications.

Status can be reported on some of the subsystems identified in the following figure. In addition,
there is a summary status that provides general information about the PC.

IEC 2251/2000

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

– 16 – 61131-5  IEC:2000(E)

Table 1 – Status presenting entities

No. Status presenting entities

1 PC (as a whole)

2 I/O subsystem (includes Input and Output modules and other intelligent I/O devices)

3 Processing unit

4 Power supply subsystem

5 Memory subsystem

6 Communication subsystem

7 Implementer specific subsystems

NOTE The status is intended to provide information about the controller including its
hardware and firmware subsystems, not considering configuration information. It is not
intended to provide information about the controlled process nor the PC application program.
The status data contains information concerning the state and the health of the PC and its
subsystems.

There are two concepts used in this part of IEC 61131 related to status: health and state. The
"health" of a PC or its subsystems is specified by returning one and only one of the three
possible values. The semantics associated with each value is specified below. They are, in
order of decreasing health:

a) GOOD – If TRUE, the PC (or the specified subsystem) has not detected any problems
which would prohibit it from performing the intended function;

b) WARNING – If TRUE, the PC (or the specified subsystem) has not detected any problems
which would prohibit it from performing the intended function, but it has detected at least
one problem which could place some limits on its abilities. The limit may be time,
performance, etc. (see the following statements for further definition of these limits);

c) BAD – If TRUE, the PC (or the specified subsystem) has detected at least one problem
which could prohibit it from performing the intended function.

The "state" of the PC system is indicated by a list of attributes, each of which may be TRUE or
FALSE. Zero, one, or more of these attributes may be TRUE at the same time. The semantics
associated with each attribute is specified in the remainder of this clause.

Each of the status information can also have implementer specified attributes. Some examples
of implementer specified attributes are:

a) additional error diagnostics (e.g. EEPROM write cycles exceeded);

b) additional operational states (e.g. auto-calibrate enabled);

c) local key status (e.g. auto-restart required).

Implementations are not required to provide subsystem status. All instances of similar types of
subsystems present in a system are reported separately. The name of the subsystem can be
provided to allow differentiating subsystems of the same type.

6.1.1 PC summary status

The PC provides the following summary status information.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 17 –

Table 2 – PC summary status

No. Item Description

1 Health GOOD All subsystems in the PC indicate a GOOD health condition

2 WARNING At least one subsystem indicates a WARNING health condition and no sub-
system indicates a BAD health condition

3 BAD At least one subsystem indicates a BAD health condition

4 Running If TRUE, this attribute indicates if at least one part of the user application has been loaded
and is under control of the PC

5 Local control If TRUE, this attribute indicates if local override control is active. If active, the ability to
control a PC and its subsystems from the network may be limited. For example, this could
be closely tied to the use of a local key switch

6 No outputs
disabled

If TRUE, this attribute indicates that the PC can change the physical state of all outputs as
a result of application program execution or other means. If not TRUE, the physical state of
some of the outputs are not affected (logical state may be affected). This is typically used
in the testing and modifying of application programs in the PC

7 No inputs
disabled

If TRUE, this attribute indicates that the PC can access the physical state of all inputs as a
result of application program execution or other means. If not TRUE, the physical state of
some inputs cannot be accessed. This is typically used in the testing and modifying of
application programs where the inputs can be simulated

8 Forced If TRUE, this attribute indicates that at least one I/O point associated with the PC has been
forced. When an Input is forced, the application program will receive the value specified by
the PADT instead of the actual value from the machine or process. When an output is
forced, the machine or process will receive the value specified by the PADT instead of the
value generated by execution of the application program. When a variable is forced, the
application program will use the value specified by the PADT instead of that generated by
the normal program execution

9 User application
present

If TRUE, this attribute indicates that the Processing Unit has at least one user application
present

10 I/O subsystem If TRUE, this attribute indicates "WARNING" or "BAD" which is caused by an I/O subsystem

11 Processing unit
subsystem

If TRUE, this attribute indicates "WARNING" or "BAD" which is caused by a processing unit
subsystem

12 Power supply
subsystem

If TRUE, this attribute indicates "WARNING" or "BAD" which is caused by a power supply
subsystem

13 Memory
subsystem

If TRUE, this attribute indicates "WARNING" or "BAD" which is caused by a memory
subsystem

14 Communication
subsystem

If TRUE, this attribute indicates "WARNING" or "BAD" which is caused by a communication
subsystem

15 Implementer
specified
subsystem

If TRUE, this attribute indicates "WARNING" or "BAD" which is caused by an implementer
specified subsystem

6.1.2 I/O subsystem

The PC provides the following status information of its I/O subsystem.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 18 – 61131-5  IEC:2000(E)

Table 3 – Status of I/O subsystem

No. Item Description

1 Health GOOD indicates that there have been no errors detected in this I/O subsystem

2 WARNING indicates that a minor fault has been detected in the I/O subsystem. An
example of a minor fault is the occurrence of recoverable errors in the
communication with a remote I/O station

3 BAD indicates that a major fault has been detected in the I/O subsystem. An
example of a major fault is losing communication with a remote I/O station

4 No outputs
disabled

If TRUE, this attribute indicates that the PC can change the physical state of all outputs
associated with the specified I/O subsystem as a result of application program execution
or other means. If not TRUE, the physical state of some of the outputs is not affected
(logical state may be affected). This is typically used in the testing and modifying of
application programs in the PC

5 No inputs
disabled

If TRUE, this attribute indicates that the PC can access the physical state of all inputs
associated with the specified I/O subsystem as a result of application program execution
or other means. If not TRUE, the physical state some inputs cannot be accessed. This is
typically used in the testing and modifying of application programs where the inputs can
be simulated

6 I/O forced If TRUE, this attribute indicates that at least one I/O point associated with this subsystem
has been forced. When an Input is forced, the application program will receive the value
specified by the PADT instead of the actual value from the machine or process. When an
output is forced, the machine or process will receive the value specified by the PADT
instead of the value generated by execution of the application program

NOTE The definition of "major fault" and "minor fault" shall be provided by the implementer.

6.1.3 Processing unit

The PC provides the following status information of its processing unit.

Table 4 – Status of processing unit

No. Item Description

1
2
3

Health This attribute identifies the health of the processing unit. The implementer shall specify
the conditions when GOOD, WARNING or BAD are valid

4 Running If TRUE, this attribute indicates if at least one part of the user application has been
loaded and is under control of the processing unit

5 Local control If TRUE, this attribute indicates if local override control is active. If active, the ability to
control the processing unit from the network may be limited. For example, this could be
closely tied to the use of a local key switch

6 No outputs
disabled

If TRUE, this attribute indicates that the processing unit can change the physical state of
all outputs controlled by this processing unit as a result of application program execution
or other means. If not TRUE, the physical state of some of the outputs are not affected
(logical state may be affected). This is typically used in the testing and modifying of
application programs in the PU

7 No inputs
disabled

If TRUE, this attribute indicates that the processing unit can access the physical state of
all inputs accessible from this processing unit as a result of application program execution
or other means. If not TRUE, the physical state of some inputs cannot be accessed. This
is typically used in the testing and modifying of application programs where the inputs can
be simulated

8 User
application
present

If TRUE, this attribute indicates that the Processing Unit has at least one User Application
present

9 Forced If TRUE, this attribute indicates that at least one variable associated with this Processing
Unit has been forced. When a variable is forced, the application program will use the
value specified by the PADT instead of that generated by the normal program execution.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 19 –

6.1.4 Power supply subsystem

The PC can provide status information about any of the power supply subsystems; see figure 6
for the assumed configuration of a PC power supply. The requirements on power supplies of
PC systems and their behavior is described in IEC 61131-1 and IEC 61131-2.

Power supply

power supply
Redundant

Battery

Mains

Power to PC circuits

IEC 2252/2000

Figure 6 – Programmable controller power supply

Table 5 – Status of power supply

No. Item Description

1 Health GOOD indicates that there have been no problems detected in the power supply to
prevent it from remaining operable for an indefinite time

2 WARNING indicates that a problem has been detected in the power supply which may
cause to become inoperable in a limited time

3 BAD indicates that the power supply is not operable

4 In use If TRUE, this attribute indicates that the power supply subsystem is in use, i.e. it supplies
power to the PC

5 Mains
operating

If TRUE, this attribute indicates that the mains are supplying power within the range
specified for the power supply

6 Mains low If TRUE, this attribute indicates that the mains are not supplying power within the range
specified for the power supply

7 Battery
operating

If TRUE, this attribute indicates that the battery is supplying power within the range
specified for the power supply

8 Battery low If TRUE, this attribute indicates that the battery is not able to supply power within the
range specified for the power supply

9 Protection
tripped

If TRUE, this attribute indicates that a protection device within the power supply has
removed a portion of the power to the PC

6.1.5 Memory subsystem

The PC provides the following status information of its memory subsystem.

Table 6 – Status of memory

No. Item Description

1 Health GOOD No errors have been found in the memory associated with this subsystem

2 WARNING At least one correctable error has been detected and no uncorrectable
errors have been detected

3 BAD At least one uncorrectable error has been detected

4 Protected1) If TRUE, this attribute indicates that the memory in this memory subsystem has been
protected in that it cannot be modified. This generally indicates that the application
program located in this memory subsystem cannot be altered.
1) This attribute models a logical state not physical characteristics of the subsystem. If
some portions of the memory are protected and some are not, these shall be reported as
multiple subsystems.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 20 – 61131-5  IEC:2000(E)

6.1.6 Communication subsystem

The PC provides the following status information of its communication subsystem.

Table 7 – Status of communication subsystem

No. Item Description

1 Health GOOD indicates that either no errors or an acceptable number of recoverable
errors has occurred

2 WARNING indicates that more than an acceptable number of recoverable errors has
occurred

3 BAD indicates that the communication subsystem is not able to communicate
with all devices as intended

4 In use If TRUE, this attribute indicates that the communication subsystem is currently
operating. For example in the case of an MMS communication interface this means that
at least one application association is established. Otherwise, the implementer shall
define the semantic of this attribute

5 Local error If TRUE, this attribute indicates that there are some errors, internal to the communi-
cation subsystem, that inhibit operation

6 Remote error If TRUE, this attribute indicates that there are some errors, at devices being communi-
cated with, that inhibit operation

NOTE 1 The communication subsystem reporting its state may not be able to report its own bad state in the
way defined in this clause. But, within a PC system, several independent communication subsystems may
operate, and all of them may provide status information.

NOTE 2 It is intended that the implementer specific information will provide additional information about each
particular interface. ISO network interfaces also provide additional information via network management
functions.

6.1.7 Implementer specific subsystems

Other subsystems of a PC system shall be modelled as implementer specific subsystems.
Some examples of these subsystems are:

a) PID controller;

b) motion controller;

c) other auxiliary processors.

Table 8 – Status of implementer specific subsystem

No. Item Description

1 Health GOOD indicates that there have been no errors detected in this subsystem

2 WARNING indicates that a minor fault has been detected in this subsystem

3 BAD indicates that a major fault has been detected in this subsystem

NOTE The definition of "major fault" and "minor fault" shall be provided by the implementer.

6.1.8 Presentation of status information

The status information shall be presented using variables with a pre-defined access path in the
configuration declaration of the PC application program or shall be presented as a variable with
direct representation to a remote communication partner.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

61131-5  IEC:2000(E) – 21 –

Table 9 – Presentation of status information

No. Presentation of status information

1 PC summary status as variable with pre-defined access path P_PCSTATE

2 PC summary status as variable with direct representation %S

3 PC summary status and status of all subsystems as variable with pre-defined access path P_PCSTATUS

4 Status information of each subsystem as a set of variables with direct representation %SC<n>

5 Type of each subsystem as a set of variables with direct representation %SU<n>

6 Name of each subsystem as a set of variables with direct representation %SN<n>

7 State of each subsystem as a set of variables with direct representation %SS<n>

8 Implementer specific status of each subsystem as a set of variables with direct representation %SI<n>

If the PC summary status shall be presented in a variable, it shall have the access path
P_PCSTATE which shall be pre-defined in the configuration declaration. The variable shall be
of type WORD and shall contain the PC summary status beginning with item number 1 at the
least significant bit upwards.

If the PC summary status shall be presented as a variable with direct representation, the direct
representation shall be %S and shall be of type WORD. It shall contain the PC summary status
beginning with item number 1 at the least significant bit upwards.

If the complete status information shall be presented as a variable, it shall have the access
path P_PCSTATUS pre-defined in the configuration section. This variable shall have a
structured type as follows:

ARRAY [0..p_NOS] OF
STRUCT

SUBSYSTEM : (SUMMARY, IO, PU, POWER, MEMORY, COMMUNICATION,
IMPLEMENTER);

NAME : STRING[<Max_Name_Len>];
STATE : ARRAY[0..15] OF BOOL;
SPECIFIC : ARRAY[0..p_BIT] OF BOOL;

END_STRUCT;

Figure 7 – Type description of status information

The array element with the number 0 shall contain the PC summary status, each element with
a higher number shall contain the status of one subsystem. The sub-element SUBSYSTEM
shall contain the type of the PC or of a subsystem. The sub-element NAME shall contain the
name of the PC or of a subsystem. The implementer shall specify the supported maximum
length for name strings, i.e. the value of Max_Name_Len. The sub-element STATE shall
contain the state information of the PC or of a subsystem as an array of BOOL in the same
order as specified in tables 2 to 8. The implementer shall specify the number of elements of the
array P_PCSTATUS i.e. the value of p_NOS, the supported types of subsystems, the semantic
of the values in the sub-element STATE for the implementer specific subsystem, the size of the
sub-element SPECIFIC, i.e. the value of p_BIT, and the semantic of the sub-element
SPECIFIC.

The status information of each subsystem may be presented as a variable with direct
representation %SC<n>, where <n> stands for a number between 0 (representing the PC
summary status) and the number of subsystems p_NOS. The variable shall have the same
internal representation as a variable with the type of the structure part of the type described in
the figure above.

IEC 2253/2000

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 22 – 61131-5  IEC:2000(E)

Additionally there may be a set of variables with direct representation %SU<n>, %SN<n>,
%SS<n>, and %SI<n>. The <n> stands for a number between 0 (representing the PC summary
status) and the number of subsystems p_NOS. The variables shall have the same internal
representation as a variable with the type of one of the structure sub-elements of the type
described in the figure above. In detail, the %SU<n> shall correspond to the sub-element
SUBSYSTEM, %SN<n> to the sub-element NAME, %SS<n> to the sub-element STATE, and
%SI<n> to the sub-element SPECIFIC.

6.2 Application specific functions

The remainder of this clause describes the functions which a PC provides to a control system,
using the communication subsystem, as illustrated in figure 2.

PC communication function PC as
requester

PC as
responder

Function block
available

Device verification yes yes yes

Data acquisition yes yes yes

Control yes yes yes

Synchronization between user applications yes yes yes

Alarm reporting yes no yes

Program execution and I/O control no yes no

Application program transfer no yes no

Connection management yes yes yes

Each of these is treated separately in the remainder of this clause. Not all functions are
available in all PCs. See clause 7 for the function block definitions.

There are some applications which combine the application categories defined below, for
example, supervisory control and data acquisition.

The following elements, while usually provided by PCs, are outside the scope of this part of
IEC 61131:

a) operator interface;

b) programming, testing, and modifying the application program, and program verification.

PCs have the ability to use operator interface devices. These devices are used by an operator
to monitor or modify the controlled process or both. They may also be used by a client system
to communicate with the operator.

Direct operator interface is when the client can communicate to the operator interface via the
communication system with no application program interaction.

Programming is the process of creating a PC application program on an instruction by
instruction or a function block by function block basis. Testing and modifying is the process of
finding and removing errors ("bugs") in an existing application program by making changes to
it. Program verification is the testing of a PC application program to verify that it performs the
function(s) it was designed to do in the process environment.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 23 –

6.2.1 Device verification

This function is provided to allow other devices to determine if the PC is able to perform its
intended function in the automated system. A PC can provide status of itself and its
subsystems. Status includes health and state information. A device may explicitly request
status from the PC or the PC may initiate an unsolicited status report using services provided
by the communication interface. See 6.1 for the definition of health and state information of a
PC system and of its subsystems.

Table 10 – Device verification features

No. Device verification

1 Provide status information

2 Initiate unsolicited status reports

6.2.2 Data acquisition

Data contained in a PC is presented as variables. This data may come from a variety of
sources and may have a wide range of meanings. It can be obtained by the client through one
of several methods.

a) Polled – The client reads the value of one or more variables at a time or condition
determined by the client. The access to the variables may be controlled by the PC. Only
selected variables are accessible over the network.

b) Programmed – The data is provided by the PC to the client at a time or condition
determined by the PC application program.

c) Configured – The communications interface to the PC can be configured by a client to
initiate a data transfer to the client.

The kinds of variables in the PC which are visible to the communication system are:

a) variables with direct representation;

b) other variables which have access paths (see IEC 61131-3 for the definition of access paths).

If the directly represented variables are accessible for communication these variables shall use
the direct representation as an identifier. The PC server (i.e. the PC which owns the variables)
can interpret the identifier using an implementer defined algorithm.

NOTE Variables with direct representation can be used like "normal" variables while programming an application
program. An additional symbolic name may be assigned to a directly represented variable using the AT construct in
the variable declaration (see IEC 61131-3).

Typically there are thousands of these variables with direct representation even in a smaller PC. It is not
reasonable to hold the name and the address of all these variables in an object dictionary of a PC.

The PC system may restrict access to variables with direct representation. The conditions
(size, location, etc.) under which each data type supported by the PC can be uninterruptedly
accessed shall be specified by the implementer.

Table 11 – Data acquisition features

No. Data acquisition

1 Variables with direct representation are accessible

2 Access paths on configuration level

3 Access paths on program level

4 Means to restrict access to variables with direct representation

5 Conditions for uninterruptible access to variables

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 24 – 61131-5  IEC:2000(E)

6.2.3 Control

A PC may support two methods of control: parametric and interlocked.

Parametric control is when the operation of the PC is directed by writing values to variables
residing in the PC. This change in operation is determined by either the application program or
other local mechanisms.

The access to the variables is controlled by the PC which holds the variables. Only those
variables which have the READ_WRITE qualifier selected in the access path declaration are
accessible over the network for parametric control.

Interlocked control is when the client requests the server to execute an application operation
and to inform the client of the result of the operation. There are two aspects of this service, the
synchronization of the client and server, and the exchange of data between them.

In interlocked control, this data exchange occurs at synchronization points in the application
program. This service can be used to have the effect of a remote procedure call from one
application program to another. The timeline shown in figure 8 illustrates this.

Client

Sends data
Ready to receive data

Receives response data

Server

Ready to receive data

Receives data
Performs requested application
Sends response data

Ready to receive data again

Time

IEC 2254/2000

Figure 8 – Interlocked control timeline

The PC implements interlocked control using the SEND (client) and RCV (server) function
blocks. Other devices may use other means to emulate the behavior of these function blocks to
access this PC communication function.

Table 12 – Control features

No. Control

1 Variables with direct representation are accessible

2 Access paths on configuration level

3 Access paths on program level

4 Means to restrict access to variables with direct representation

5 Conditions for uninterruptible access to variables

6 Interlocked control

6.2.4 Synchronization between user applications

User applications may need a synchronization service. For example, a user application may
start the execution of another application after completion of an algorithm. The synchronization
service is provided by the interlocked control mechanism (see 6.2.3).

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

61131-5  IEC:2000(E) – 25 –

6.2.5 Alarm reporting

The PC can have the ability to signal alarm messages to a client when a predetermined
condition occurs. The client may indicate an acknowledgement of these alarms to the PC. This
differs from normal data acquisition in that the state of an alarm point is remembered by the PC
until it is acknowledged by the client. A summary of the unacknowledged alarms can be
generated by the PC at the request of the client.

Table 13 – Alarm reporting features

No. Alarm reporting

1 Signal messages

2 Receive acknowledgements

3 Generate summary of unacknowledged alarms

6.2.6 Application program execution and I/O control

Execution of a PC Application Program is managed by the Application Program Execution
function (see 5.2). PC Application Programs can be started and stopped. PC Application
Programs can be started either from an initial state or from the state they were in at the time
they were stopped.

The PC application program in a PC system consists of one configuration and zero, one or
more resources (see IEC 61131-3). Configurations and resources may be started and stopped.
The resources are started and stopped when the configuration is started and stopped and they
can be started or stopped independently of the configuration.

The Interface Function to Actuators (outputs) associated with a running Application Program
can be directed to either use the values supplied by the Application Program or held in a known
state. This Interface state is specified at the time the Application Program state is changed.
The outputs can be directed to either be set to implementer specified states, hold the outputs
in the current state, set all outputs to zero, or change some outputs to user specified states (on
or off, with those not specified holding the last state) through an implementer specified
mechanism (for example, tables, PC procedure, etc.).

The Interface Function to Sensors (inputs) associated with a running Application Program can
be directed to either provide the actual data from the sensors or to continue to use previously
supplied values. The input state is specified at the time the Application Program state is
changed.

Table 14 – Startable and stoppable units

No. Startable and stoppable unit

1 Configuration

2 Resource

The I/O (inputs and outputs) associated with a running resource shall either be controlled by
the program or held in a known state, which is determined when the resource is started.
Resources shall be able to be started either from an initial state (cold restart using START) or
from the state they were in at the time they were stopped (warm restart using RESUME). The
desired state of the outputs shall be able to be specified as part of the stopping process.

The state of the I/O can be set to the following values when a configuration or resource is
started or stopped:

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 26 – 61131-5  IEC:2000(E)

Table 15 – Meaning of I/O State

Value of I/O State Meaning Set by

Controlled Actuators are being controlled by the application program or the part of
the application program being started. Inputs are being supplied to the
application program or the part of the application program being started
by the interface function to sensors and actuators.

Starting

Hold outputs Actuators are not being controlled by the application program or the part
of the application program being started, they are held in the current
state. Sensors are being supplied to the application program or the part
of the application program being started by the interface function to
sensors and actuators.

Starting

Hold current state Actuators are not being controlled by the application program or the part
of the application program being started or stopped, they are held in the
current state. Sensors are not being supplied to the application program
or the part of the application program being started, they are held in the
current state.

Starting,
stopping

Implementer state Actuators are not being controlled by the application program or the part
of the application program being stopped, they are held in a state, which
was specified by the implementer. The application program is not
running, therefore the state of the Sensor Interface is not specified.

Stopping

Zero outputs Actuators are not being controlled by the application program or the part
of the application program being stopped, they are held in the zero state.
The application program is not running, therefore the state of the Sensor
Interface is not specified.

Stopping

User specified Actuators are not being controlled by the application program or the part
of the application program being stopped, they are held in a state which
was specified by the user. The application program is not running,
therefore the state of the Sensor Interface is not specified.

Stopping

Table 16 – I/O state

No. I/O state

1 Controlled

2 Hold outputs

3 Hold current state

4 Implementer specified

5 Zero outputs

6 User specified

NOTE The communication subsystem should not be depended upon
as a replacement for hardwired emergency stop switches. Normal
safety practices should be followed.

Table 17 – Execution and I/O control features

No. Execution and I/O control

1 Receive requests to start a startable and stoppable unit

2 Receive requests to stop a startable and stoppable unit

3 Receive requests to resume a startable and stoppable unit

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

61131-5  IEC:2000(E) – 27 –

6.2.7 Application program transfer

The application program is transferred using the application program storage and data storage
function of a PC (see 5.2). Application program transfer allows the client to upload the
complete contents of the programmable memory or portions thereof for archiving or verification
or to download it for restoring the PC to a known state. This function also provides the ability to
place the PC in a safe state before modifying the contents of its programmable memory, and
restarting it in a safe manner when the application program transfer is completed.

The initiation of the program transfer is typically done by a device that is not a PC. The
services include:

a) upload for archive;

b) upload for verification;

c) download for restore to previously known good system; and

d) download an off-line developed system.

The portions of the programmable memory which can be uploaded or downloaded are given in
table 18.

NOTE A load unit contains the variable P_DDATE, their value is the date of the last modification of the load unit.

Table 18 – Loadable units

No. Loadable units

1 Configuration

2 Resource

3 Programs

4 Global variables

5 Access paths on configuration level

6 Access paths on program level

7 Load units contain the variable P_DDATE

The implementer shall specify if other language elements, for example, function types or
function block types are loadable and the conditions and restrictions for downloading and
uploading these.

This part of IEC 61131 defines a means to perform uploads and downloads on the whole PC, a
subsystem of the PC and a portion of a subsystem. The whole or the portion of the PC to be
downloaded shall be explicitly stopped before the download. The whole or the portion of the
system being downloaded shall not be available for other uses until the download is completed.
The implementer shall specify what other clients can do with a PC when one client is
downloading it.

Table 19 – Application program transfer features

No. Application program transfer

1 Receive requests to download a loadable unit

2 Receive requests to upload a loadable unit

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

– 28 – 61131-5  IEC:2000(E)

6.2.8 Connection management

The Connection Management provides the means to install, to maintain and close commu-
nications connections to a remote communication partner. If multiple requests are initiated to
operate with a device, they may all work over the same connection. Not all communications
subsystems require connections, for example, point-to-point communication.

Connections are controlled explicitly by the application program using the CONNECT function
block or are provided by the communication subsystem if and when needed.

Table 20 – Connection management features

No. Connection management

1 Install connections

2 Close connections

3 Using one connection for multiple requests

7 PC communication function blocks

7.1 Overview of the communication function blocks

The following PC communication functions and their corresponding function blocks are
described below.

Table 21 – Overview of the communication function blocks

No. Subclause Name of communication function
block or function

1 7.2 Semantic of communication FB parameters
(addressing of remote variables)

REMOTE_VAR

2
3

7.3 Device verification STATUS,
USTATUS

4 7.4 Polled data acquisition READ,

5
6

7
8

7.5 Programmed data acquisition USEND,
URCV,

BSEND,
BRCV

9 7.6 Parametric control WRITE,

10
11

7.7 Interlocked control SEND,
RCV

12
13

7.8 Programmed alarm report NOTIFY,
ALARM

14 7.9 Connection management CONNECT

The numbers given in the above table shall be used to state compliance to these
communication function blocks (CFB).

7.1.1 Device verification

The STATUS and USTATUS function blocks are provided so that the PC can collect status
from other devices. These are provided to allow the PC to determine if the other devices are
able to perform their intended function in the automated system.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

61131-5  IEC:2000(E) – 29 –

7.1.2 Data acquisition

Data contained in other devices may be presented as variables. This data may come from a
variety of sources and may have a wide range of meanings. It can be obtained by the PC
through one of two methods using communication function blocks.

a) Polled – The PC uses the READ function block to obtain the value of one or more variables
at a time or condition determined by the PC application program. The access to the
variables may be controlled by the device being read.

b) Programmed – The data is provided to the PC at a time or condition determined by the
other device. The PC uses the URCV function block to provide the data to the PC
application program. The PC uses the USEND to provide unsolicited data to other devices.

The conditions (size, location, etc.) under which each data type supported by the other device
can be uninterruptedly accessed is determined by the other device.

7.1.3 Control

Two methods of control shall be supported by PCs: parametric and interlocked.

Parametric control is when the operation of the other device is directed by writing values to
variables residing in it. The access to the variables may be controlled by the PC which holds
the variables. The PC uses the WRITE function block to perform this action from the PC
application program.

Interlocked control is when the client requests the server to execute an application operation
and to inform the client of the result of the operation. The PC uses the SEND and RCV function
blocks to implement the client and server roles, respectively.

7.1.4 Alarm reporting

The PC can have the ability to signal alarm messages to a client when a predetermined
condition occurs. The client may indicate an acknowledgement of these alarms to the PC. The
ALARM and NOTIFY function blocks are used by the PC application program to generate
acknowledged and unacknowledged alarms, respectively.

7.1.5 Connection management

The PC application program uses the CONNECT function block to manage connections.

7.2 Semantic of communication FB parameters

The communication function blocks use a common semantic of their function block inputs and
outputs. The meaning of these inputs and outputs is described below. Some communication
function blocks have special input or output parameters, they are described where the
communication function blocks themselves are described.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 30 – 61131-5  IEC:2000(E)

Table 22 – Semantic of communication FB parameters

Parameter name Data type of the parameter Interpretation

EN_R BOOL Enabled to receive data

REQ/RESP BOOL Perform function on raising edge

ID COMM_CHANNEL Identification of the communication channel

R_ID STRING Identification of the remote FB inside the channel

SD_i ANY User data to send

VAR_i STRING or
data type of the output of the function
REMOTE_VAR

Identification of a variable of the remote
communication partner

DONE BOOL Requested function performed (good and valid)

NDR BOOL New user data received (good and valid)

ERROR BOOL New non-zero status received

STATUS INT Last detected status (error or good)

RD_i ANY Last received user data

The ID input references the communication channel used by the instance of the communication
function block, i.e. it determines the remote communication partner. The ID input is of
COMM_CHANNEL type which shall be implementer defined.

NOTE The value given at the ID input of a communication function block instance is intended to hold or reference
the information which is necessary to manage the communication to the remote communication partner. This
information may be dependent on the implementation and the communication subsystem used.

The R_ID input is used to identify the corresponding instance of the communication function
block at the remote partner, if the PC communication function is provided by a corresponding
pair of function block instances.

One instance of a communication function block shall use the same communication channel
and communicate to the same corresponding remote function block instance throughout its
whole lifetime.

The variables to be read or written are identified using the VAR_i inputs of the READ and
WRITE function blocks. The actual parameter is typically a string which contains the name of
the remote variable.

Additionally the VAR_i parameter may also have an implementer defined data type named
VAR_ADDR. A function REMOTE_VAR is defined to generate the access information for
nested variables.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 31 –

 +--------------+
 | REMOTE_VAR |
 SCOPES ---| SCOPE |--- VAR_ADDR
 STRING ---| SC_ID |
 STRING ---| NAME |
 (Note) ---| SUB |
 +--------------+
FUNCTION REMOTE_VAR (* Generate remote variable address *)
 : VAR_ADDR; (* Data which may be used at *)
 (* VAR_i inputs of the READ and *)
 (* WRITE function blocks *)
 VAR_INPUT
 SCOPE : INT; (* Scope of the variable *)
 SC_ID : STRING; (* Identifier of the name scope *)
 NAME : STRING; (* Name of the variable *)
 SUB : (Note);
 END_VAR

NOTE The input SUB can be of type STRING, or ANY_INT.

Figure 9 – Function REMOTE_VAR

SCOPE is an integer which identifies the name scopes of the programming languages of
IEC 61131-3, the communication system, or the implementer supports as scope of a remote
variable.

Table 23 – Values of the SCOPE parameter

Name scope of IEC 61131-3 Value

Configuration 0

Resource 1

Program 2

Function block instance 3

Reserved for future standardization 4 .. 9

Reserved for name scopes specific to communication
subsystems

10 .. 99

Implementer specific <0, > 99

If the SCOPE of the variable requires an identifier, the SC_ID is used to supply that identifier.
NAME contains the name of the remote variable. If SUB is of string type, the value of the string
is interpreted as a sub-element name. If SUB is an ANY_INT, the value is interpreted as an
index. If SUB is an empty string, the complete variable is addressed.

The data type of the function output is implementer defined. The result of the function may be
passed to the VAR_i inputs of the READ and WRITE function block or may be stored in a
variable of the same data type. The use of the REMOTE_VAR function may be restricted only
to produce valid values for the VAR_i parameters of the READ and WRITE function blocks.

There may be additional functions to support the communication subsystem specific or
implementer specific addressing schemes which produce an output of VAR_ADDR type. The
communication subsystem specific functions are specified in the mapping annexes of this part
of IEC 61131.

All parameters of the communication function blocks are mandatory except the extensible
parameters SD_i, RD_i, and VAR_i depending on the function block type. It is not requested

IEC 2255/2000

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

– 32 – 61131-5  IEC:2000(E)

that the SD_i or RD_i parameters have the same data type if more than one SD_i parameter is
used at one function block instance or if an SD_i parameter is used with different function
block instances. The implementer shall specify the number of SD_i, RD_i, and VAR_i
parameters which are supported with one invocation of a communication function block.
Additionally, he shall describe if there are restrictions with the use of these parameters, for
example data type or size of the actual parameters.

If a communication function block requests that data types are compatible, the compatibility
check shall always be true if the same IEC 61131-3 data types are used at a client PC and a
server PC. Additional communication subsystem specific compatibility rules may be defined.

The outputs are initialized with system zero. NDR, DONE, and ERROR pulse true until the next
invocation of this instance. That is, each of the communication function blocks implies the
following structure, which is not shown in the state diagrams of those function blocks.

All inputs

R_TRIG
NDR / DONE

ERROR

STATUS

Communication
function
block

described in
the following
sections

CLK Q

R_TRIG

CLK Q

TRIG2

TRIG1

IEC 2256/2000

Figure 10 – Principle of status signalling

If a communication error of an instance of a communication function block is detected by the
PC system or by the algorithm of the communication function block, the ERROR and the
STATUS output of the function block instance are set. The ERROR output remains true during
the time between two invocations of this instance (see figure 11).

 Communication function block:

 errors detected
 --------|--------------|----------------|-------|-----------

 ERROR +-----+ +-----+ +-----------+
 --------+ +-----------+ +-----------+ +---

 STATUS output set
 --------!-----------------!-----------------!-----!---------

 --------^-----^-----^-----^-----^-----^-----^-----^-----^---
 instance invocations

Figure 11 – Timing diagram of the ERROR and STATUS outputs

The NDR, DONE, ERROR and the STATUS output shall be set to new values only
synchronously to the instance invocations of the communication function blocks, even if an
error is detected in between.

IEC 2257/2000

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 33 –

The following values for the STATUS output of the various function blocks have been defined.
Not all values are used by all function blocks.

Table 24 – Value and interpretation of the STATUS output

STATUS
value Interpretation

0 No error

1 Error of lower layers, no communication possible

2 Other negative response from remote communication
partner

3 R_ID does not exist in the communication channel

4 Data type mismatch

5 Reset received

6 Receiver not enabled

7 Remote communication partner in wrong state

8 Access denied to remote object

9 Receiver overrun (user data are new)

10 Access to local object rejected

11 Requested service exceeds local resources

12 .. 20 Reserved for future standardization

–1 Instance of this function is busy and cannot provide
additional services at this time

< –1 or > 20 Codes less than –1 or greater than 20 are to be specified
by the implementer

If errors are received from one or more communication partners in the case of one-to-many or
one-to-all communication, the STATUS parameter is set according to the first error received.

The RD_i parameters shall contain the received data. These parameters shall be input/output
parameters.

The following subclauses contain a description of the communication function blocks. The
representation of the function blocks is given in a graphical and a textual way, and the types
and the meanings of the associated inputs and outputs are shown. The STATUS output shall
take on the appropriate value as defined.

The normal operation is illustrated by a timing diagram.

The operation of the function blocks is described based on state diagrams. The transitions
depending on the application program are mapped onto conditions of the function block inputs.
The transitions depending on the communication system are described independent of the
communication system used. The explicit mappings to certain communication systems is
described in the annexes. The value of the function block outputs are given for each state of
the state diagram.

Errors caused by the communication system or by local problems may occur asynchronously in
all states of a communication function block. Only those errors are explicitly described in the
state diagrams which cause state transitions or require actions. Otherwise, the errors shall only
be signalled to the application program using the ERROR and STATUS outputs as shown in
figures 10 and 11.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

– 34 – 61131-5  IEC:2000(E)

The communication function blocks need to be initialized. The initialization state INIT contained
in all state diagrams shall be left at least before the return of the first invocation of the function
block instance. In this state, all actions shall be done to enable communication. The
communication channel to the remote communication partner shall be established, if the
connection management of the channel is not explicitly programmed.

7.3 Device verification

The PC communication function device verification uses the STATUS and the USTATUS
function blocks.

One instance of a STATUS or USTATUS function block provides one instance of the PC
function device verification.

A PC can request a remote communication partner to send back to it its status information
using the STATUS function block.

A PC can itself enable to receive status information of a remote communication partner using the
USTATUS function block. The remote communication partner shall at least inform the USTATUS
instance whenever its status information presented in the PHYS and LOG output changes.

The FB output PHYS contains the physical status of the remote device, the FB output LOG
contains its logical communication status. The FB output LOCAL may contain additional status
information up to 128 bits. The implementer shall specify the used length of this additional
status information and shall define the semantics of it.

NOTE The READ function block can be used to obtain additional status information.

The ID parameter identifies the communication channel to the remote communication partner.

If an error occurred, the ERROR output pulses one cycle to indicate an error and the STATUS
output contains the error code.

 +-------------+
 | STATUS |
 BOOL ---> REQ NDR |--- BOOL
 COMM_CHANNEL ---| ID ERROR |--- BOOL
 | STATUS |--- INT
 | PHYS |--- INT
 | LOG |--- INT
 | LOCAL |--- ARRAY[0..7] OF WORD
 +-------------+
 FUNCTION_BLOCK STATUS (* Device verification – requester *)
 VAR_INPUT
 REQ : BOOL R_EDGE; (* Request *)
 ID : COMM_CHANNEL;(* Communication channel *)
 END_VAR

 VAR_OUTPUT
 NDR : BOOL; (* New user data received *)
 ERROR : BOOL; (* New non-zero STATUS received *)
 STATUS: INT; (* Last detected status *)
 PHYS : INT; (* Physical status of remote *)
 (* communication partner *)
 LOG : INT; (* Logical status of remote *)
 (* communication partner *)
 LOCAL : ARRAY[0..7] OF WORD; (* Local status of remote *)
 END_VAR (* communication partner *)

Figure 12 – STATUS function block

IEC 2258/2000

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

61131-5  IEC:2000(E) – 35 –

 +-------------+
 | USTATUS |
 BOOL ---| EN_R NDR |--- BOOL
 COMM_CHANNEL ---| ID ERROR |--- BOOL
 | STATUS |--- INT
 | PHYS |--- INT
 | LOG |--- INT
 | LOCAL |--- ARRAY[0..7] OF WORD
 +-------------+
 FUNCTION_BLOCK USTATUS (* Device verification – receiver *)
 VAR_INPUT
 EN_R : BOOL; (* Enable to receive data *)
 ID : COMM_CHANNEL;(* Communication channel *)
 END_VAR

 VAR_OUTPUT
 NDR : BOOL; (* New user data received *)
 ERROR : BOOL; (* New non-zero STATUS received *)
 STATUS: INT; (* Last detected status *)
 PHYS : INT; (* Physical status of remote *)
 (* communication partner *)
 LOG : INT; (* Logical status of remote *)
 (* communication partner *)
 LOCAL : ARRAY[0..7] OF WORD; (* Local status of remote *)
 (* communication partner *)
 END_VAR

Figure 13 – USTATUS function block

Requester's STATUS block:
 +---------------+
 REQ | |
 ----+ +------------------------------------
 t0 t1

 +--------+
 NDR | |
 ----------------+ +--------------------------------
 t2 t3
 TIMING RELATIONSHIPS:
 t1 > t0
 t2 = t0 + tAD + tX (Accept delay and transmit time)
 t3 = t2 + tNC (Time to next invocation)
 EVENT IDENTIFICATION:
 t0: Request of read status information from remote
 communication partner
 t1: Requester resets STATUS.REQ input
 t0..t2: Remote status information is sent to requester
 t2: Transmission complete, requester's outputs
 contain the received status information
 t3: Next invocation of this function block instance

Figure 14 – Timing diagram of the STATUS function block

The state diagram shown in figure 15 describes the algorithm of the STATUS function block.
Tables 25 and 26 describe the transitions of this state diagram and the actions to be performed
within the states and the settings of the STATUS function block outputs.

IEC 2259/2000

IEC 2260/2000

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 36 – 61131-5  IEC:2000(E)

1

INIT

2

3 4

5 5

IDLE

WAITING

HAVE_DATA ERROR

IEC 2261/2000

Figure 15 – State diagram of STATUS function block

Table 25 – Transitions of the STATUS state diagram

Transition Condition

1 Initialization done

2 At raising edge of REQ input

3 Positive response from remote communication partner

4 Negative response from remote communication partner
or communication problems detected

5 After next invocation of this instance

Table 26 – Action table for STATUS state diagram

FB outputs

State Actions NDR c ERROR c STATUS PHYS, LOG, LOCAL

INIT a Initialize outputs 0 0 0 0

IDLE No actions 0 0 --- ---

WAITING Request status information
from remote communication
partner

 --- --- –1 ---

HAVE_DATA Deposit status information
in instance

 1 0 0 New status
information

ERROR Indicate error 0 1 b ---

--- indicates "unchanged" FB outputs.
a INIT is the cold start state.
b The error code is placed in the status output.
c See figure 10.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 37 –

The state diagram of figure 16 describes the algorithm of the USTATUS function block.
Tables 27 and 28 describe the transitions of this state diagram and the actions to be performed
within the states and the settings of the USTATUS function block outputs.

1

INIT

2

4 5

6 6

HAVE_DATA ERROR

ENABLED

DISABLED

3

IEC 2262/2000

Figure 16 – State diagram of USTATUS function block

Table 27 – Transitions of USTATUS state diagrams

Transition Condition

1 Initialization done

2 EN_R = 1

3 EN_R = 0

4 Status information received from remote communication
partner

5 Communication problems detected

6 After next invocation of this instance

Table 28 – Action table of USTATUS state diagram

FB outputs

State Actions NDR c ERROR c STATUS PHYS, LOG, LOCAL

INIT a Initialize outputs 0 0 0 0

DISABLED No actions 0 0 --- ---

ENABLED No actions 0 0 --- ---

HAVE_DATA Deposit status
information

1 0 0 New status
information

ERROR Indicate error 0 1 b ---

--- indicates "unchanged" FB outputs.
a INIT is the cold start state.
b The error code is placed in the status output.
c See figure 10.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

– 38 – 61131-5  IEC:2000(E)

7.4 Polled data acquisition

The PC communication function polled data acquisition uses the READ function block.

One instance of a READ function block provides one instance of the PC function polled data
acquisition.

The ID parameter identifies the communication channel to the remote communication partner.

The VAR_i inputs of the READ function block contain a string which can be interpreted by the
remote communication partner as variable identifier. The remote communication partner sends
the values of these variables back to the requesting READ instance. The READ passes the
received variable values to its application program via its RD_i outputs. Each requested
variable of the remote communication partner shall have a compatible data type to the variable
programmed at the RD_i outputs of the READ instance. The VAR_i and RD_i parameters are
extensible. At least VAR_1 and RD_1 shall be present.

If the remote communication partner is a PC, variables with an access path and variables with
direct representation may be accessed with a READ function block. The variables with an
access path are referenced in the VAR_ACCESS construction of the PC programming
languages (see 2.7.1 of IEC 61131-3). The access name specified in this construction shall be
used as the identifier of the variable in the VAR_i input. If a variable with direct representation
shall be accessed with a READ function block, the VAR_i input shall contain the direct
representation, for example %IW17, as a string. It shall be possible to mix the access to
variables with an access path and with direct representation in one invocation of a READ
function block instance.

If a variable shall be read via an access path, which is declared inside a program (see 2.5.3 of
IEC 61131-3) the REMOTE_VAR function shall be used. The name of the program instance
shall be used at the SC_ID input, the name of the variable at the NAME input, for example to
read the variable AB12 in the program DO7 the REMOTE_VAR function shall be invoked with
REMOTE_VAR (2, "DO7", "AB12", "").

If a sub-element of a structured variable or an element of an array shall be read, the SUB input
of the REMOTE_VAR function shall be used to identify this sub-element or element in the
VAR_i inputs.

If an error occurred, the ERROR output pulses one cycle to indicate an error and the STATUS
output contains the error code.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 39 –

 +--------------+
 | READ |
 BOOL ---> REQ NDR |--- BOOL
 COMM_CHANNEL ---| ID ERROR |--- BOOL
 (Note) ---| VAR_1 STATUS |--- INT
 : | : RD_1 |--- ANY
 (Note) ---| VAR_n : | :
 | RD_n |--- ANY
 +--------------+
 FUNCTION_BLOCK READ (* Polled data acquisition *)
 VAR_INPUT
 REQ : BOOL R_EDGE; (* Request *)
 ID : COMM_CHANNEL;(* Communication channel *)
 VAR_1 : (Note); (* Identification of the *)
 : (* requested variables, *)
 VAR_n : (Note); (* extensible *)
 END_VAR

 VAR_OUTPUT
 NDR : BOOL; (* New user data received *)
 ERROR : BOOL; (* New non-zero STATUS received *)
 STATUS: INT; (* Last detected status *)
 END_VAR

 VAR_IN_OUT
 RD_1 : ANY; (* Received user data *)
 : (* extensible and any type *)
 RD_n : ANY;
 END_VAR

NOTE The VAR_i inputs are extensible and can be of STRING type or of the VAR_ADDR
data type.

Figure 17 – READ function block

 Requester's READ block:
 +---------------+
 REQ | |
 ----+ +------------------------------------
 t0 t1

 +--------+
 NDR | |
 ----------------+ +--------------------------------
 t2 t3
 TIMING RELATIONSHIPS:
 t1 > t0
 t2 = t0 + tAD + tX (Accept delay and transmit time)
 t3 = t2 + tNC (Time to next invocation)
 EVENT IDENTIFICATION:
 t0: Request of read data from the remote communication
 partner
 t1: Requester resets READ.REQ input
 t0..t2: The remote data are sent to
 receiver's READ.RD output
 t2: Transmission complete, requester's READ.RD
 contains the received Data
 t3: Next invocation of this function block instance

Figure 18 – Timing diagram of READ function block

IEC 2263/2000

IEC 2264/2000

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 40 – 61131-5  IEC:2000(E)

The state diagram of figure 19 describes the algorithm of the READ function block. Tables 29
and 30 describe the transitions of this state diagram and the actions to be performed within the
states and the settings of the READ function block outputs.

1

INIT

2

5 6

7 7

HAVE_DATA ERROR

3 4

IDLE

WAITING

CHECKING

IEC 2265/2000

Figure 19 – State diagram of READ function block

Table 29 – Transitions of the READ state diagram

Transition Condition

1 Initialization done

2 At raising edge of REQ input

3 Positive response from remote communication partner

4 Negative response from remote communication partner
or other communication problems detected

5 Data types of RD_i and of received data match

6 Data types of RD_i and of received data do not match

7 After next invocation of this instance

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

61131-5  IEC:2000(E) – 41 –

Table 30 – Action table for READ state diagram

FB outputs

State Actions NDR c ERROR c STATUS RD_1..RD..n

INIT a Initialize outputs 0 0 0 System null

IDLE No actions 0 0 --- ---

WAITING Request variables from
remote communication
partner

0 0 –1 ---

CHECKING Verify data type match 0 0 --- ---

HAVE_DATA Deposit data 1 0 0 New data

ERROR Indicate error 0 1 b ---

--- indicates "unchanged" FB outputs.
a INIT is the cold start state.
b The error code is placed in the status output.
c See figure 10.

7.5 Programmed data acquisition

7.5.1 USEND/URCV function blocks

The PC communication function programmed data acquisition uses the USEND and the URCV
function blocks.

Corresponding instances of one USEND and one URCV function block provide one instance of
the PC function programmed data acquisition.

The USEND instance sends data to the URCV instance which may process this data with its
application program. When requested the USEND instance takes the data from its SD_i inputs
and transmits it to the corresponding URCV instance. Previously received data is overwritten.
The URCV instance passes the received data to the application program via its RD_i outputs.
This occurs whenever the application program requests its USEND instance to send data. The
URCV instance passes newly received data whenever it gets one. It informs the application
program when new data have arrived. The following data flow diagram illustrates this.

URCV

function block

USEND

function block data flow

IEC 2266/2000

Figure 20 – Programmed data acquisition data flow

The SD_i and RD_i parameters are extensible. At least the SD_1 input at the FB USEND and
the RD_1 output at the FB URCV shall be present. The number and each of the data types of
the SD_i inputs of the USEND instance and the RD_i outputs of the corresponding URCV
instance shall be compatible.

One USEND instance sends data to one URCV instance; that means, they are corresponding
instances, if the value of the ID parameter references the same communication channel and if
the value of the R_ID parameters are equal within the scope of this communication channel.

NOTE If the communication system provides communication channels which support one-to-many or one-to-all
connections, these function blocks may be used to program a data acquisition function from one communication
partner to many.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 42 – 61131-5  IEC:2000(E)

If an error occurred, the ERROR output pulses one cycle to indicate an error and the STATUS
output contains the error code.

 +-------------+
 | USEND |
 BOOL ---> REQ DONE |--- BOOL
 COMM_CHANNEL ---| ID ERROR |--- BOOL
 STRING ---| R_ID STATUS |--- INT
 ANY ---| SD_1 |
 : | : |
 ANY ---| SD_n |
 +-------------+
 FUNCTION_BLOCK USEND (* Programmed data acquisition *)
 VAR_INPUT (* requester *)
 REQ : BOOL R_EDGE; (* Request to send *)
 ID : COMM_CHANNEL;(* Communication channel *)
 R_ID : STRING; (* Remote function block *)
 SD_1 : ANY; (* User data to send *)
 : (* extensible and any type *)
 SD_n : ANY;
 END_VAR

 VAR_OUTPUT
 DONE : BOOL; (* Function performed *)
 ERROR : BOOL; (* New non-zero STATUS received *)
 STATUS: INT; (* Last detected status *)
 END_VAR

Figure 21 – USEND function block

 +-------------+
 | URCV |
 BOOL ---| EN_R NDR |--- BOOL
 COMM_CHANNEL ---| ID ERROR |--- BOOL
 STRING ---| R_ID STATUS |--- INT
 | RD_1 |--- ANY
 | : | :
 | RD_n |--- ANY
 +-------------+
 FUNCTION_BLOCK URCV (* Programmed data acquisition *)
 VAR_INPUT (* receiver *)
 EN_R : BOOL; (* Enable to receive data *)
 ID : COMM_CHANNEL;(* Communication channel *)
 R_ID : STRING; (* Remote function block *)
 END_VAR

 VAR_OUTPUT
 NDR : BOOL; (* New user data received *)
 ERROR : BOOL; (* New non-zero STATUS received *)
 STATUS: INT; (* Last detected status *)
 END_VAR

 VAR_IN_OUT
 RD_1 : ANY; (* Received user data *)
 : (* extensible and any type *)
 RD_n : ANY;
 END_VAR

Figure 22 – URCV function block

IEC 2267/2000

IEC 2268/2000

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

61131-5  IEC:2000(E) – 43 –

Requester's USEND block:
 +---------------+
 REQ | |
 ----+ +---
 t0 t1
 Responder's URCV block:
 +--------+
 NDR | |
 ----------------+ +-------------------------------------
 t2 t3
 TIMING RELATIONSHIPS:
 t1 > t0
 t2 = t0 + tAD + tX (Accept delay and transmit time)
 t3 = t2 + tNC (Time to next invocation)
 EVENT IDENTIFICATION:
 t0: Request to send at USEND.REQ
 t1: Requester resets USEND.REQ input
 t0..t2: Requester's USEND.SD inputs sent to
 receiver's URCV.RD outputs
 t2: Transmission complete, receiver's URCV.RD
 contain the received send data
 t3: Next invocation of this function block instance

Figure 23 – Timing diagram of USEND and URCV function blocks

The state diagram shown in figure 24 describes the algorithm of the USEND function block.
Tables 31 and 32 describe the transitions of this state diagram and the actions to be performed
within the states and the settings of the USEND function block outputs.

1

INIT

2

3 4

5 5

ERRORSENT

IDLE

TRYING

IEC 2270/2000

Figure 24 – State diagram of USEND function block

IEC 2269/2000

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 44 – 61131-5  IEC:2000(E)

Table 31 – Transitions of the USEND state diagram

Transition Condition

1 Initialization done

2 At raising edge of REQ input

3 Communication system indicates "Sent to Remote
Communication Partner"

4 Communication system indicates "Cannot Send to
Remote Communication Partner" or other communication
problems detected

5 After next invocation of this instance

Table 32 – Action table for USEND state diagram

FB outputs

State Actions DONE c ERROR c STATUS

INIT a Initialize outputs 0 0 0

IDLE No actions 0 0 ---

TRYING Send data given at the SD_i inputs to
remote communication partner

--- --- ---

SENT Clear error indication 1 0 0

ERROR Indicate error 0 1 b

--- indicates "unchanged" FB outputs.
a INIT is the cold start state.
b The error code is placed in the status output.
c See figure 10.

The state diagram of figure 25 describes the algorithm of the URCV function block. Tables 33
and 34 describe the transitions of this state diagram and the actions to be performed within the
states and the settings of the URCV function block outputs.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 45 –

1

INIT

2

6 7

8 8

HAVE_DATA ERROR

4 5

DISABLED

ENABLED

CHECKING

3

IEC 2271/2000

Figure 25 – State diagram of URCV function block

Table 33 – Transitions of URCV state diagrams

Transition Condition

1 Initialization done

2 EN_R = 1

3 EN_R = 0

4 Data received from remote communication partner

5 Communication problems detected

6 Data types of SD_i of USEND and RD_i of URCV match

7 Data types of SD_i of USEND and RD_i of URCV do not
match

8 After next invocation of this instance

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 46 – 61131-5  IEC:2000(E)

Table 34 – Action table of URCV state diagram

FB outputs

State Actions NDR c ERROR c STATUS RD_1..RD..n

INIT a Initialize outputs 0 0 0 System null

DISABLED No actions 0 0 --- ---

ENABLED No actions --- --- --- ---

CHECKING Verify data type match --- --- --- ---

HAVE_DATA Deposit data 1 0 0, 9 New data

ERROR Indicate error 0 1 b ---

--- indicates "unchanged" FB outputs.
a INIT is the cold start state.
b The error code is placed in the status output.
c See figure 10.

7.5.2 BSEND / BRCV Function Blocks

Corresponding instances of one BSEND and one BRCV function block provide one instance of
the PC function programmed data acquisition.

The BSEND instance sends data to the BRCV instance, which may process this data with its
application program. When requested the BSEND instance takes the data from its SD_1 input
and transmits it to the corresponding BRCV instance. Previously received data is overwritten.
The BRCV instance passes the received data to the application program via its RD_1 output.
This occurs when the application program requests its BSEND instance to send data. The
BRCV instance passes newly received data when it has finished its previous request and gets
new data. It informs the application program when new data have arrived.

The SD_1 input of the BSEND instance and the RD_1 output of the BRCV instance shall both
be of data type ANY and are interpreted as a sequence of bytes.

NOTE The representation of the data in the controller is typically dependent on the implementation. The
communication partners shall agree in the interpretation of any data if data of data type other than array of byte are
transferred. This restricts the interoperability of programs using these communication function blocks.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

61131-5  IEC:2000(E) – 47 –

The BSEND instance shall send as many bytes out of the data given at the SD_1 input as given
at the LEN input of the BSEND instance. If the LEN input has the value 0 the complete variable
given at the SD_1 input shall be transferred. The RD_1 output shall be able to store the data
sent. The LEN output of the BRCV instance shall contain the count of bytes received in the
RD_1 output. An error shall be signalled, if

– either the value at the LEN input of the BSEND instance is greater than the total length in
bytes of the variable connected to the SD_1 input,

– or the total length in bytes of the received data is greater than the total length in bytes of
the variable connected to the RD_1 output of the BRCV instance.

The data transfer phase of the BSEND instance starts with the raising edge at the REQ input. It
ends when the DONE or the ERROR output is set to 1. The DONE output shall be set to 1 for
one cycle after the complete block of data to be sent is completely transmitted. During the data
transfer phase, the implementer may restrict the access to the variable containing the data to
be sent. The RD_1 output of the BRCV instance is valid when the NDR output has the value 1.

One BSEND instance sends data to one BRCV instance; that means, they are corresponding
instances, if the value of the ID parameter reference the same communication channel and if
the value of the R_ID parameters are equal within the scope of this communication channel.

The data transfer shall be cancelled if a raising edge is detected at the R input of the BSEND
instance. If the data transfer is cancelled the ERROR and the STATUS outputs of the BRCV
instance are set. In case the values of the RD_1 and LEN outputs are undefined.

If an error occurred, the ERROR output pulses one cycle to indicate an error and the STATUS
output contains the error code.

 +-------------+
 | BSEND |
 BOOL ---> REQ DONE |--- BOOL
 BOOL ---> R ERROR |--- BOOL
 COMM_CHANNEL ---| ID STATUS |--- INT
 STRING ---| R_ID |
 ANY_INT ---| LEN |
 ANY ---| SD_1 |
 +-------------+
 FUNCTION_BLOCK BSEND (* Programmed data acquisition *)
 VAR_INPUT (* requester *)
 REQ : BOOL R_EDGE; (* Request to send *)
 R : BOOL R_EDGE; (* Reset *)
 ID : COMM_CHANNEL;(* Communication channel *)
 R_ID : STRING; (* Remote function block *)
 LEN : ANY_INT; (* Bytes to send *)
 SD_1 : ANY; (* User data to send *)
 END_VAR

 VAR_OUTPUT
 DONE : BOOL; (* Function performed *)
 ERROR : BOOL; (* New non-zero STATUS received *)
 STATUS: INT; (* Last detected status *)
 END_VAR

Figure 26 – BSEND function block

IEC 2272/2000

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 48 – 61131-5  IEC:2000(E)

 +-------------+
 | BRCV |
 BOOL ---| EN_R NDR |--- BOOL
 COMM_CHANNEL ---| ID ERROR |--- BOOL
 STRING ---| R_ID STATUS |--- INT
 | LEN |--- ANY_INT
 | RD_1 |--- ANY
 +-------------+
 FUNCTION_BLOCK BRCV (* Programmed data acquisition *)
 VAR_INPUT (* receiver *)
 EN_R : BOOL; (* Enable to receive data *)
 ID : COMM_CHANNEL;(* Communication channel *)
 R_ID : STRING; (* Remote function block *)
 END_VAR

 VAR_OUTPUT
 NDR : BOOL; (* New user data received *)
 ERROR : BOOL; (* New non-zero STATUS received *)
 STATUS: INT; (* Last detected status *)
 LEN : ANY_INT; (* Count of received bytes *)
 END_VAR

 VAR_IN_OUT
 RD_1 : ANY; (* Received user data *)
 END_VAR

Figure 27 – BRCV function block

 Requester's BSEND block:
 +--------+
 REQ | |
 ----+ +--
 t0 t1

 +---+
 DONE | |
 ----------------+ +---
 t3 t4

 Responder's BRCV block:
 +--------+
 NDR | |
 ---------------+ +-------------------------------------
 t2 t5
 TIMING RELATIONSHIPS:
 t1 > t0
 t2 = t0 + tAD + tX (Accept delay and transmit time)
 t3 = t2 + tCF (Confirmation transmit time)
 t4 = t3 + tNC1 (Time to next invocation)
 t5 = t2 + tNC2 (Time to next invocation)
 EVENT IDENTIFICATION:
 t0: Request to send at BSEND.REQ
 t1: Requester resets BSEND.REQ input
 t0..t2: Requester's BSEND.SD inputs sent to
 receiver's BRCV.RD outputs
 t2: Transmission of complete data finished, receiver's BRCV.RD
 contain the received send data
 t3: Last confirmation received by Requester
 t4: Next invocation of this function block instance
 t5: Next invocation of this function block instance

Figure 28 – Timing diagram of BSEND and BRCV function blocks

IEC 2273/2000

IEC 2274/2000

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

61131-5  IEC:2000(E) – 49 –

The state diagram shown in figure 29 describes the algorithm of the BSEND function block.
Tables 35 and 36 describe the transitions of this state diagram and the actions to be performed
within the states and the settings of the BSEND function block outputs.

INIT

1

2

6 3

8

9

8

4

5

4

5

3 6 7

SEND_FIRST

IDLE

CANCEL

ERRORSENT

SEND_NEXT

IEC 2275/2000

Figure 29 – State diagram of BSEND function block

Table 35 – Transitions of the BSEND state diagram

Transition Condition

1 Initialization done

2 At raising edge of REQ input

3 Positive confirmation received and more data to send

4 Negative confirmation received or communication
problems detected

5 At raising edge of R input

6 Positive confirmation received and no more data to send

7 Immediate

8 After next invocation of this instance

9 Communication problems detected

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 50 – 61131-5  IEC:2000(E)

Table 36 – Action table for BSEND state diagram

FB outputs

State Actions DONE c ERROR c STATUS

INIT a Initialize outputs 0 0 0

IDLE No actions 0 0 ---

SEND_FIRST Send first block of data given at the
SD_1 input to remote communication
partner, send a maximum of LEN bytes
in total

--- –1 ---

SEND_NEXT Send next block of data given at the
SD_1 input to remote communication
partner, send a maximum of LEN bytes
in total

--- --- ---

SENT Clear error indication 1 0 0

CANCEL Stop the data transfer --- --- ---

ERROR Indicate error 0 1 b

--- indicates "unchanged" FB outputs.
a INIT is the cold start state.
b The error code is placed in the status output.
c See figure 10.

The state diagram shown in figure 30 describes the algorithm of the BRCV function block.
Tables 37 and 38 describe the transitions of this state diagram and the actions to be performed
within the states and the settings of the BRCV function block outputs.

INIT

1

2

5 6

10

8

10

9

7 7

RECEIVING

ENABLED

DISABLED

ERRORHAVE_IT

RESP_LASTRESP_MORE

3

4

RESP_NEG

4

7

CANCELLED

8

7

IEC 2276/2000

Figure 30 – State diagram of BRCV function block

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 51 –

Table 37 – Transitions of BRCV state diagrams

Transition Condition

1 Initialization done

2 EN_R = 1

3 EN_R = 0

4 Data received from remote communication partner

5 More data follows is true

6 More data follows is false

7 Immediate

8 Communication problems detected

9 Indication received to cancel data transfer

10 After next invocation of this instance

Table 38 – Action table of BRCV state diagram

FB outputs

State Actions NDR c ERROR c STATUS RD_1, LEN

INIT a Initialize outputs 0 0 0 System null

DISABLED No actions 0 0 --- ---

RESP_NEG Send negative
response

--- --- --- ---

ENABLED No actions --- --- --- ---

RECEIVING Verify data can be
stored and store at the
given index

--- --- d New data d

RESP_MORE Send positive response --- --- --- ---

RESP_LAST Send positive response --- --- --- ---

CANCELLED Send positive response --- --- 5 ---

HAVE_IT Deposit data 1 0 0 New data

ERROR Indicate error 0 1 b ---

--- indicates "unchanged" FB outputs.
a INIT is the cold start state.
b The error code is placed in the status output.
c See figure 10.
d New data may be placed in the RD_1 output, in case the STATUS output shall be set to –1.

7.6 Parametric control

The PC communication function parametric control uses the WRITE function block.

One instance of a WRITE function block provides one instance of the PC function parametric
control.

The ID parameter identifies the communication channel to the remote communication partner.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

– 52 – 61131-5  IEC:2000(E)

The VAR_i inputs of the WRITE function block contain a string which can be interpreted by the
remote communication partner as variable identifier (access path) of it. The SD_i inputs
reference the values to be written to the variables identified by the VAR_i inputs. The remote
communication partner writes the values to these variables. The VAR_i and SD_i parameters
are extensible. At least VAR_1 and SD_1 shall be present.

Each variable of the remote communication partner shall have the same data type as
programmed at the SD_i inputs of the WRITE instance.

If the remote communication partner is a PC, variables with an access path and variables with
direct representation may be accessed with a WRITE function block. The variables with an
access path are referenced in the VAR_ACCESS construction of the PC programming
languages (see 2.7.1 of IEC 61131-3). The access name specified in this construction shall be
used as the identifier of the variable in the VAR_i input. If a variable with direct representation
shall be accessed with a WRITE function block, the VAR_i input shall contain the direct
representation, for example %IW17, as a string. It is possible to mix the access to variables
with an access path and with direct representations in one invocation of a WRITE function
block instance.

If a variable shall be written via an access path, which is declared inside a program (see 2.5.3
of IEC 61131-3), the REMOTE_VAR function shall be used. The name of the program instance
shall be used at the SC_ID input, the name of the variable at the NAME input, for example to
write the variable AB12 in the program DO7 the REMOTE_VAR function shall be invoked with
REMOTE_VAR (2, "DO7", "AB12", "").

If a sub-element of a structured variable or an element of an array shall be written, the SUB
input of the REMOTE_VAR function shall be used to identify this sub-element or element in the
VAR_i inputs.

If an error occurred, the ERROR output pulses one cycle to indicate an error and the STATUS
output contains the error code.

 +--------------+
 | WRITE |
 BOOL ---> REQ DONE |--- BOOL
 COMM_CHANNEL ---| ID ERROR |--- BOOL
 (Note) ---| VAR_1 STATUS |--- INT
 ANY ---| SD_1 |
 : | : |
 (Note) ---| VAR_n |
 ANY ---| SD_n |
 +--------------+
 FUNCTION_BLOCK WRITE (* Parametric control *)
 VAR_INPUT
 REQ : BOOL R_EDGE; (* Request *)
 ID : COMM_CHANNEL;(* Communication channel *)
 VAR_1 : (Note); (* Identifier and *)
 SD_1 : ANY; (* value of variable to be set *)
 : (* extensible and any type *)
 VAR_n : (Note);
 SD_n : ANY;
 END_VAR

 VAR_OUTPUT
 DONE : BOOL; (* Function performed *)
 ERROR : BOOL; (* New non-zero STATUS received *)
 STATUS: INT; (* Last detected status *)
 END_VAR

NOTE The VAR_i inputs are extensible and can be of STRING type or of the VAR_ADDR
data type.

Figure 31 – WRITE function block

IEC 2277/2000

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 53 –

 Requester's WRITE block:
 +---------------+
 REQ | |
 ----+ +------------------------------------
 t0 t1

 +--------+
 DONE | |
 ----------------+ +--------------------------------
 t2 t3
 TIMING RELATIONSHIPS:
 t1 > t0
 t2 = t0 + tAD + tX (Accept delay and transmit time)
 t3 = t2 + tNC (Time to next invocation)
 EVENT IDENTIFICATION:
 t0: Request to write data at the remote communication
 partner
 t1: Requester resets WRITE.REQ input
 t0..t2: The data (identifiers and values) are sent to
 the remote communication partner, the variables
 are set, the acknowledgement is sent back
 t2: Transmission complete, acknowledgement received
 t3: Next invocation of this function block instance

Figure 32 – Timing diagram of WRITE function block

The state diagram shown in figure 33 describes the algorithm of the WRITE function block.
Tables 39 and 40 describe the transitions of this state diagram and the actions to be performed
within the states and the settings of the WRITE function block outputs.

1

INIT

2

3 4

5 5

ERROR

IDLE

HAVE_IT

WAITING

IEC 2279/2000

Figure 33 – State diagram of WRITE function block

IEC 2278/2000

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 54 – 61131-5  IEC:2000(E)

Table 39 – Transitions of the WRITE state diagram

Transition Condition

1 Initialization done

2 At raising edge of REQ input

3 Positive response of remote communication partner

4 Negative response from remote communication partner
or other communication problems detected

5 After next invocation of this instance

Table 40 – Action table for WRITE state diagram

FB outputs

State Actions DONE c ERROR c STATUS

INIT a Initialize outputs 0 0 0

IDLE No actions 0 0 ---

WAITING Request to write
variables into remote
communication partner

--- --- –1

HAVE_IT Indicate success 1 0 0

ERROR Indicate error 0 1 b

--- indicates "unchanged" FB outputs.
a INIT is the cold start state.
b The error code is placed in the status output.
c See figure 10.

7.7 Interlocked control

The PC communication function interlocked control uses the SEND and the RCV function blocks.

Corresponding instances of one SEND and of one RCV function block type provide one PC
function interlocked control. Two instances of the SEND and RCV function block are
corresponding, if the value of the ID parameters reference the same communication channel and
if the value of the R_ID parameters are equal within the scope of this communication channel.

The SEND instance requests the RCV instance to execute an application operation and to
inform the SEND instance of the result of the operation. This has two aspects, the
synchronization of the application program of the SEND and RCV instances and the exchange
of information between them. This function can be used to have the effect of a remote
procedure call from one application program to another.

The interlocked control function is requested by a raising edge of the REQ input of the SEND
function block instance. When requested the SEND instance takes the data from its SD_i
inputs and transmits it to the corresponding RCV instance.

When the EN_R input of the RCV instance has the value of 1, it is enabled to receive data from
the corresponding SEND instance and to perform the intended operation of the application
program. When the RCV instance receives the data from the SEND instance, it passes the
received data to the application program via its RD_i outputs. The NDR output of the RCV
instance pulses one cycle to indicate that new data were received. After performing the
intended operation of the application program, the result data are taken via the SD_i inputs and
the response is initiated on a raising edge of the RESP input of the RCV instance.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 55 –

When the SEND instance receives this response, it passes the received data to its RD_i
outputs. The NDR output of the SEND instance pulses one cycle to indicate that new data are
ready.

A raising edge on the R input of the SEND instance resets both the SEND and the
corresponding RCV instance.

The number and each of the data types of the SD_i inputs of the SEND instance and the RD_i
outputs of the corresponding RCV instance shall be compatible. The same is required for the
SD_i inputs of the RCV instance and the RD_i outputs of the SEND instance. The SD_i inputs
and the RD_i outputs of the SEND and RCV function blocks are extensible. Either the send
data or the response data or both may be empty, that is, the user did not program any SD_i
inputs and corresponding RD_i outputs.

If the received data did not match the RD_i outputs of the RCV function block or an error
occurred, the ERROR output pulses one cycle to indicate an error and the STATUS output
contains the error code.

 +-------------+
 | SEND |
 BOOL ---> REQ NDR |--- BOOL
 BOOL ---> R ERROR |--- BOOL
 COMM_CHANNEL ---| ID STATUS |--- INT
 STRING ---| R_ID RD_1 |--- ANY
 ANY ---| SD_1 : | :
 : | : RD_m |--- ANY
 ANY ---| SD_n |
 +-------------+
 FUNCTION_BLOCK SEND (* Interlocked control, requester*)
 VAR_INPUT
 REQ : BOOL R_EDGE; (* Request to send with raising edge*)
 R : BOOL R_EDGE; (* Reset local, remote function *)
 ID : COMM_CHANNEL;(* Communication channel *)
 R_ID : STRING; (* Remote function block *)
 SD_1 : ANY; (* User data to send *)
 : (* extensible and any type *)
 SD_n : ANY;
 END_VAR

 VAR_OUTPUT
 NDR : BOOL; (* New user data received *)
 ERROR : BOOL; (* New non-zero STATUS received *)
 STATUS: INT; (* Last detected status *)
 END_VAR

 VAR_IN_OUT
 RD_1 : ANY; (* Received user data *)
 : (* extensible and any type *)
 RD_m : ANY; (* It is not required that m = n *)
 END_VAR (* either m, n, or both may be 0*)

Figure 34 – SEND function block

IEC 2280/2000

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 56 – 61131-5  IEC:2000(E)

 +-------------+
 | RCV |
 BOOL ---| EN_R NDR |--- BOOL
 BOOL ---> RESP ERROR |--- BOOL
 COMM_CHANNEL ---| ID STATUS |--- INT
 STRING ---| R_ID RD_1 |--- ANY
 ANY ---| SD_1 : | :
 | : RD_n |--- ANY
 ANY ---| SD_m |
 +-------------+
 FUNCTION_BLOCK RCV (* Interlocked control, responder*)
 VAR_INPUT
 EN_R : BOOL; (* Enable to receive data *)
 RESP : BOOL R_EDGE; (* Request to send response data *)
 ID : COMM_CHANNEL;(* Communication channel *)
 R_ID : STRING; (* Remote function block *)
 SD_1 : ANY; (* User data to send *)
 : (* extensible and any type *)
 SD_m : ANY;
 END_VAR

 VAR_OUTPUT
 NDR : BOOL; (* New user data received *)
 ERROR : BOOL; (* New non-zero STATUS received *)
 STATUS: INT; (* Last detected status *)
 END_VAR

 VAR_IN_OUT
 RD_1 : ANY; (* Received user data *)
 : (* extensible and any type *)
 RD_n : ANY; (* It is not required that m = n *)
 END_VAR (* either m, n, or both may be 0*)

Figure 35 – RCV function block

IEC 2281/2000

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

61131-5  IEC:2000(E) – 57 –

Requester's SEND block:
 +------+
 REQ | |
 ----+ +---
 t0 t1
 +------+
 NDR | |
 --+ +---
 t6 t7

 Responder's RCV block:
 +------+
 NDR | |
 ----------------+ +----------------------------------
 t2 t3
 +------------+
 RESP | |
 ------------------------------+ +--------------
 t4 t5
 TIMING RELATIONSHIPS:
 t1 > t0
 t2 = t0 + tSX (Send transmit time)
 t3 = t2 + tNI (Time to next invocation)
 t4 > t2
 t5 > t4
 t6 = t4 + tRX (Response transmit time)
 t7 = t6 + tNI (Time to next invocation)
 EVENT IDENTIFICATION:
 t0: Request to send at SEND.REQ
 t1: Requester resets SEND.REQ input
 t2: Transmission complete, responder's RCV.RD_i
 contain the received send data
 t3: Next invocation of RCV instance
 t4: Responder requests to send RCV.SD_j inputs
 t5: Responder resets RCV.RESP input
 t6: Transaction complete, requester's SEND.RD_j
 contain the received response data
 t7: Next invocation of the SEND instance

Figure 36 – Timing diagram of SEND and RCV function blocks

IEC 2282/2000

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

– 58 – 61131-5  IEC:2000(E)

The state diagram shown in figure 37 describes the algorithm of the SEND function block.
Tables 41 and 42 describe the transitions of this state diagram and the actions to be performed
within the states and the settings of the SEND function block outputs.

2

1010

1

7

3 8

5 6

11

4, 12 12

9, 12

IDLE

SEND_AND_WAIT CANCEL

CHECKING WAIT_RCV

HAVE_DATA ERROR

INIT

9

8, 12

WAIT_CNCL

IEC 2283/2000

Figure 37 – State diagram of SEND function block

Table 41 – Transitions of the SEND state diagram

Transition Condition

1 Initialization done

2 At raising edge of REQ input

3 Positive response from RCV

4 Negative response from RCV

5 Data types of received data and RD_1 to RD_m match

6 Data type of received data and RD_1 to RD_m mismatch

7 At raising edge of R input

8 Positive or negative response to the reset request

9 Positive or negative response from RCV

10 After next invocation of the instance

11 Local resource problems detected

12 Communication problems detected

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 59 –

Table 42 – Action table for SEND state diagram

FB outputs

State Actions NDR c ERROR c STATUS RD_1 ... RD_m

INIT a Initialize outputs 0 0 0 System null

IDLE No actions 0 0 --- ---

SEND_AND_WAIT Send data to RCV, evaluate
transition 7 first

 --- --- –1 ---

CHECKING Verify data type match --- --- --- ---

HAVE_DATA Deposit data in instance 1 0 0 New data from
RCV

ERROR Indicate error 0 1 b ---

CANCEL Request to reset RCV --- --- 5 ---

WAIT_RCV No actions --- --- --- ---

WAIT_CNCL No actions --- --- --- ---

--- indicates "unchanged" FB outputs.
a INIT is the cold start state.
b The error code is placed in the status output.
c See figure 10.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 60 – 61131-5  IEC:2000(E)

The state diagram shown in figure 38 describes the algorithm of the RCV function block.
Tables 43 and 44 describe the transitions of this state diagram and the actions to be performed
within the states and the settings of the RCV function block outputs.

5

11

412

3

7 8 9

 11 11

9, 10

1
2

3

12

4

4

6

9, 10

12

10

RESPONDING ERROR

NAK_CANCELED

WAITING
12

HAVE_DATA

NAK_DIS CHECKING

ENABLEDDISABLED

NAK_ERROR

NAK_BUSY

INIT

IEC 2284/2000

Figure 38 – State diagram of RCV function block

Table 43 – Transitions of RCV state diagrams

Transition Condition

1 Initialization done

2 EN_R = 1

3 EN_R = 0

4 When data received from SEND

5 Data types of received data and RD_1 to RD_n match

6 Data types of received data and RD_1 to RD_n mismatch

7 Raising edge of RESP input

8 When reset is requested by SEND

9 Communication problems detected

10 Local resource problems detected

11 After next invocation of the instance

12 True, i.e. condition is empty

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

61131-5  IEC:2000(E) – 61 –

Table 44 – Action table of RCV state diagram

FB outputs

State Actions NDR c ERROR c STATUS RD_1 ... RD_n

INIT a Initialize outputs 0 0 0 System null

DISABLED No actions 0 0 --- ---

ENABLED No actions 0 0 --- ---

CHECKING Verify data type match --- --- --- ---

HAVE_DATA Deposit data 1 0 0 New data from
SEND

NAK_ERROR Send negative
response to SEND

--- --- --- ---

WAITING No actions 0 0 --- ---

NAK_BUSY Send negative
response to SEND

--- --- --- ---

NAK_CANCELED Send positive response
to the reset request
and then send negative
response to SEND

--- --- --- ---

RESPONDING Send positive response
with user data to SEND

--- --- --- ---

ERROR Indicate error 0 1 b ---

NAK_DIS Send negative
response to SEND

--- --- --- ---

--- indicates "unchanged" FB outputs.
a INIT is the cold start state.
b The error code is placed in the status output.
c See figure 10.

7.8 Programmed alarm report

The PC communication function programmed alarm report uses the NOTIFY and the ALARM
function blocks.

One instance of one NOTIFY function block or one instance of one ALARM function block
provides one instance of the PC function programmed alarm report.

A PC can be programmed using the ALARM function block to report an alarm message with an
acknowledgement capability. Or, it can be programmed using the NOTIFY function block to
report an alarm message without an acknowledgement capability.

The raising edge at the EVENT input reports an alarm message of a coming event, the falling
edge at the EVENT input reports the going of this event. The reason for the event can be given
with the EV_ID input, its severity given at the SEVERITY input of the function blocks. The
severity shall have a range from 0 to 127, inclusive. 0 shall represent the highest severity, 64 a
normal severity, and 127 the lowest severity. Additional data at the SD_i inputs may be used to
specify more details of the occurred event.

The ACK_UP output of the ALARM function block shall contain an indication, whether or not
the coming of the event was acknowledged by the remote communication partner. The
ACK_DN output shall contain this indication for the going of the event. Only the
acknowledgement of the most recent event shall set the acknowledgement outputs. The same
behavior shall be true for the falling edge of the EVENT input and the ACK_DN output.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

– 62 – 61131-5  IEC:2000(E)

The ID parameter identifies the communication channel to the remote communication partner.
If the communication system provides communication channels which support one-to-many or
one-to-all connections, these function blocks may be used to program an alarm report function
from one PC to many. In this case the first valid acknowledgement sets the appropriate ALARM
acknowledgement output.

The send data may provide additional information in the alarm message. The send data may be
empty, i.e. no SD_i inputs are programmed.

If an error occurred, the ERROR output pulses one cycle to indicate an error and the STATUS
output contains the error code.

 +--------------+
 | NOTIFY |
 BOOL ---| EVENT DONE |--- BOOL
 COMM_CHANNEL ---| ID ERROR |--- BOOL
 STRING ---| EV_ID STATUS |--- INT
 INT ---| SEVERITY |
 ANY ---| SD_1 |
 : | : |
 ANY ---| SD_n |
 +--------------+
 FUNCTION_BLOCK NOTIFY (* Programmed alarm report *)
 VAR_INPUT (* without an acknowledgement *)
 EVENT : BOOL; (* Request to report event *)
 ID : COMM_CHANNEL;(* Communication channel *)
 EV_ID : STRING; (* Event identifier *)
 SEVERITY: INT; (* Severity of the event *)
 SD_1 : ANY; (* User data to send *)
 : (* extensible and any type *)
 SD_n : ANY;
 END_VAR

 VAR_OUTPUT
 DONE : BOOL; (* Function performed *)
 ERROR : BOOL; (* New non-zero STATUS received *)
 STATUS : INT; (* Last detected status *)
 END_VAR

Figure 39 – NOTIFY function block

IEC 2285/2000

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 63 –

 +-----------------+
 | ALARM |
 BOOL ---| EN_R DONE |--- BOOL
 BOOL ---| EVENT ERROR |--- BOOL
 COMM_CHANNEL ---| ID STATUS |--- INT
 STRING ---| EV_ID ACK_UP |--- BOOL
 INT ---| SEVERITY ACK_DN |--- BOOL
 ANY ---| SD_1 |
 : | : |
 ANY ---| SD_n |
 +-----------------+
 FUNCTION_BLOCK ALARM (* Programmed alarm report *)
 VAR_INPUT (* with an acknowledgement *)
 EN_R : BOOL; (* Enable alarming function *)
 EVENT : BOOL; (* Request to report event *)
 ID : COMM_CHANNEL;(* Communication channel *)
 EV_ID : STRING; (* Event identifier *)
 SEVERITY: INT; (* Severity of the event *)
 SD_1 : ANY; (* User data to send *)
 : (* extensible and any type *)
 SD_n : ANY;
 END_VAR

 VAR_OUTPUT
 DONE : BOOL; (* Function performed *)
 ERROR : BOOL; (* New non-zero STATUS received *)
 STATUS : INT; (* Last detected status *)
 ACK_UP : BOOL; (* Acknowledged coming event *)
 ACK_DN : BOOL; (* Acknowledged going event *)
 END_VAR

Figure 40 – ALARM function block

IEC 2286/2000

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

– 64 – 61131-5  IEC:2000(E)

Requester's ALARM block:
 +-------------------+ +-----------+
 EVENT | | | |
 ----+ +-----------+ +----------
 t0 t2 t4 t6

 +---------------------+ +---
 ACK_UP | | |
 ----------------+ +----------------+
 t1 t5

 +----------------+
 ACK_DN | |
 ---------------------------------+ +--------
 t3 t7
 TIMING RELATIONSHIPS:
 t1 = t0 + tXC + tAC (Transmit time and acknowledge delay
 of coming event)
 t2 > t0
 t3 = t2 + tXG + tAG (Transmit time and acknowledge delay
 of going event)
 t4 > t2
 t5 = t4 + tRC (Delay from coming to resetting ACK_UP)
 t6 > t4
 t7 = t6 + tRG (Delay from going to resetting ACK_DN)
 EVENT IDENTIFICATION:
 t0: Coming of the event
 t1: Acknowledgement of coming event
 t2: Going of the event
 t3: Acknowledgement of going event
 t4: Renewed coming of the event
 t5: Reset of the ACK_UP output
 t6: Renewed going of the event
 t7: Reset of the ACK_DN output

Figure 41 – Timing diagram of ALARM function block

IEC 2287/2000

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

61131-5  IEC:2000(E) – 65 –

The state diagram shown in figure 42 describes the algorithm of the NOTIFY function block.
Tables 45 and 46 describe the transitions of this state diagram and the actions to be performed
within the states and the settings of the NOTIFY function block outputs.

1

INIT

4

6 6

ERROR

2 3

4

3

5

5

TRY_DOWN

IDLE

SENT_DOWN

SENT_UP

TRY_UP

IEC 2288/2000

Figure 42 – State diagram of NOTIFY function block

Table 45 – Transitions of the NOTIFY state diagram

Transition Condition

1 Initialization done

2 Raising edge of EVENT input

3 Falling edge of EVENT input

4 Communication system indicates "Sent to remote commu-
nication partner"

5 Communication system indicates "Cannot send to remote
communication partner"

6 After next invocation of this instance

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 66 – 61131-5  IEC:2000(E)

Table 46 – Action table for NOTIFY state diagram

FB outputs

State Actions DONE c ERROR c STATUS

INIT a Initialize outputs 0 0 0

IDLE No actions 0 0 0

TRY_UP Request to report the coming alarm to the
remote communication partner

0 0 ---

SENT_UP No actions 1 0 ---

TRY_DOWN Request to report the going alarm to the
remote communication partner

0 0 ---

SENT_DOWN No actions 1 0 ---

ERROR Indicate error 0 1 b

--- indicates "unchanged" FB outputs.
a INIT is the cold start state.
b The error code is placed in the status output.
c See figure 10.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 67 –

The state diagram shown in figure 43 describes the algorithm of the ALARM function block.
Tables 47 and 48 describe the transitions of this state diagram and the actions to be performed
within the states and the settings of the ALARM function block outputs.

4

8

8

5

2

1

9

10 10

6

3

9
4

UP

ACK_UP

DOWN_NO_ACK

DOWN

ACK_DOWN ERROR

ENABLED

DISABLED

9

INIT

U3

D2

6

D1

U2

5

7

7

5

5

4
U1

9

DOWN_NOT_DONE

IEC 2289/2000

NOTE The states labelled U1, U2, U3, D1, and D2 may also transition to the ERROR state if the lower layers
detect an error while trying to send the event notification.

Figure 43 – State diagram of ALARM function block

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 68 – 61131-5  IEC:2000(E)

Table 47 – Transitions of the ALARM state diagram

Transition Condition

1 Initialization done

2 EN_R=1

3 EN_R=0

4 Raising edge of EVENT input

5 Coming event notification sent by communication system

6 Falling edge of EVENT input

7 Going event notification sent by communication system

8 Receive acknowledge of the report of the coming alarm

9 Receive acknowledge of the report of the going alarm

10 After next invocation of this instance

Table 48 – Action table for ALARM state diagram

FB outputs

State Actions DONE c ERROR c STATUS ACK_UP ACK_DN

INIT a Initialize outputs 0 0 0 0 0

DISABLED No actions 0 0 --- 0 0

ENABLED No actions 0 0 0 --- ---

U1, U2, U3 Request to report the
coming alarm to the
remote communication
partner

0 0 --- 0 ---

UP No actions 1 --- --- --- ---

ACK_UP Confirm received
acknowledgement
positively

--- 0 0 1 ---

D1, D2 Request to report the
going alarm to the remote
communication partner

0 0 --- --- 0

DOWN_NO_ACK No actions 1 --- --- --- ---

DOWN No actions 1 --- --- --- ---

DOWN_NOT_DONE No actions 0 --- --- --- ---

ACK_DOWN Confirm received
acknowledgement
positively

--- 0 0 --- 1

ERROR Indicate error and confirm
received
acknowledgement
negatively

0 1 b 0 0

--- indicates "unchanged" FB outputs.
a INIT is the cold start state.
b The error code is placed in the status output.
c See figure 10.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 69 –

7.9 Connection management

The PC communication function connection management uses the CONNECT function block.

One instance of one CONNECT function block provides one instance of the PC function
connection management. This communication function allows to establish a connection
between the calling communication partner and the remote communication partner.

A PC can request a remote communication partner to establish a connection between this PC
and the remote communication partner. The remote communication partner is identified using
its name. (The name shall be specified by means of the implementer of the remote commu-
nication partner.) A communication channel to the remote communication partner is defined.

The remote communication partner shall decide whether or not to establish the connection.

If the invocation of a CONNECT function block establishes a communication channel to a
remote communication partner, the ID output shall provide the communication channel
descriptor which can be used as an input for the ID input to other communication function
blocks which communicates with this remote communication partner.

The remote communication partner itself may also use this connection for its communication as
a client. The remote communication partner can get the necessary value of the ID parameter
by calling a CONNECT function block referencing the communication partner which has
already established the connection.

If an error occurred, the ERROR output pulses one cycle to indicate an error and the STATUS
output contains the error code.

A communication channel may also be established by local means of the PC on one or both
sides of the communication channel. In this case the PC shall show the same behavior as if the
CONNECT function block for this communication channel is invoked at the beginning of the
application program cycle with the EN_C parameter fixed to 1. The implementer shall define
how the application program can get the appropriate value for the ID parameter to use this
communication channel.

 +---------------+
 | CONNECT |
 BOOL ---| EN_C VALID |--- BOOL
 (Note) ---| PARTNER ERROR |--- BOOL
 | STATUS |--- INT
 | ID |--- COMM_CHANNEL
 +---------------+
 FUNCTION_BLOCK CONNECT (* Connection management *)
 VAR_INPUT
 EN_C : BOOL; (* Enable connection *)
 PARTNER: (Note); (* Name of the remote communication *)
 (* partner *)
 END_VAR

 VAR_OUTPUT
 VALID : BOOL; (* Connection ID valid *)
 ERROR : BOOL; (* New non-zero STATUS received *)
 STATUS: INT; (* Last detected status *)
 ID : COMM_CHANNEL;(* Communication channel *)
 END_VAR

NOTE The data type of the input PARTNER is implementer specific. Additional information may be
provided with this parameter which may be used to establish the communication channel, for
example, a password or some communication subsystem specific parameters.

Figure 44 – CONNECT function block

IEC 2290/2000

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 70 – 61131-5  IEC:2000(E)

Existence of the connection:
 +-----------------------------+
 | |
 ---------+ +-----------------
 t1 t4

 Requester's CONNECT block:
 +------------------------------+
 EN_C | |
 ----+ +---------------------
 t0 t3

 +----------------------------+
 VALID | |
 ---------------+ +-------------
 t2 t5
 TIMING RELATIONSHIPS:
 t1 = t0 + tAD + tX (Time to establish the connection)
 t2 = t1 + tNC (Time to next invocation)
 t4 = t3 + tAD (Time to conclude the connection)
 t5 = t4 + tNC (Time to next invocation)
 EVENT IDENTIFICATION:
 t0: Request to establish a connection to the remote
 communication partner
 t1: Connection is established
 t2: Validity of the new connection is signalled to the
 application program
 t3: Request to conclude the connection
 t4: The connection is concluded
 t5: Conclusion of the connection is signalled

Figure 45 – Timing diagram of CONNECT function block

IEC 2291/2000

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 71 –

The state diagram shown in figure 46 describes the algorithm of the CONNECT function block.
Tables 49 and 50 describe the transitions of this state diagram and the actions to be performed
within the states and the settings of the CONNECT function block outputs.

2

8

13

13

5

14

13 7614

10 3

14

8

8 10 2 11 12

4

13

3

11

12
14

9

1

CONCLUDING

ERROR ERROR

ABORT_2

CHECKING_2

CONNECTING

RETRYABORT_1

DENY

CLOSINGRETRY

CONCL_PASSIV

ACCEPT

CHECKING_1

CONNECTED

INIT

IDLE

13

Request connectionAccept connection

IEC 2292/2000

Figure 46 – State diagram of CONNECT function block

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 72 – 61131-5  IEC:2000(E)

Table 49 – Transitions of the CONNECT state diagram

Transition Condition

1 Initialization done

2 EN_C=1

3 EN_C=0

4 Receive a positive confirmation to the request to establish
a new connection from the remote communication partner

5 Receive a negative confirmation to the request to establish
a new connection from the remote communication partner

6 Receive a positive confirmation to the request to conclude
the connection from the remote communication partner

7 Receive a negative confirmation to the request to conclude
the connection from the remote communication partner

8 Loss of connection

9 Receive a request to establish a new connection to
the remote communication partner

10 Receive a request to conclude the connection to
the remote communication partner

11 Accept to establish a connection

12 Deny to establish a connection

13 Next invocation

14 Immediately

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

61131-5  IEC:2000(E) – 73 –

Table 50 – Action table for CONNECT state diagram

FB outputs

State Actions VALID ERROR d STATUS ID c

INIT a Initialize outputs 0 0 0 NG

IDLE No actions 0 --- --- NG

CHECKING_1 Check if the connection
can be established

0 --- --- NG

DENY Send negative response to
the request of the
connection

0 --- --- NG

ACCEPT Accept to establish a
connection and a send a
positive response

0 0 --- NG

CONCL_PASSIV Send a positive response
to conclude the connection

0 --- --- NG

CONNECTING Request a connection to
the remote communication
partner

0 0 –1 NG

ABORT_1 Request to abort
communication

0 --- --- NG

CHECKING_2 Check if the connection
can be established

0 0 --- NG

ABORT_2 Request to abort
communication

0 --- --- NG

CONNECTED No action 1 0 0 OK

RETRY No action 0 1 1 NG

CLOSING Request to conclude
the connection

0 0 –1 NG

CONCLUDING Send positive response to
conclude the connection

0 0 --- NG

ERROR Indicate error 0 1 b NG

--- indicates "unchanged" FB output.
a INIT is the cold start state.
b The error code is placed in the status output.
c NG indicates "invalid connection ID"
 OK indicates "valid connection ID".
d See figure 10.

7.10 Example for the use of communication function blocks

7.10.1 Establishing a communication channel

Two PCs want to establish a communication channel. Both of the PCs want to use the channel
for client and server function, i.e. both need to get an appropriate value for their ID parameter
of the Communication function blocks. In this example, it is assumed that the data type
COMM_CHANNEL stands for a handle or index of the communication channel. The example is
given using the Structured Text programming language as defined in IEC 61131-3.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 74 – 61131-5  IEC:2000(E)

Extract of the application program of PC1:

(* Declaration of the data and the CONNECT instance, e.g. at the beginning
 of an application program *)
VAR
TO_PC2: COMM_CHANNEL; (* Variable which is set by CONNECT *):
CO1: CONNECT; (* Declaration of the CONNECT instance *)
END_VAR;

(* somewhere inside the body of the program *)

CO1(EN_C:=1, PARTNER:='PC2'); (* Invokes the CONNECT instance CO1 and
establishes a communication channel to PC2 *)

IF CO1.ERROR THEN (* It is recommended to define some error handling *):
IF CO1.VALID THEN (* Store reference of the communication channel *)
TO_PC2:= CO1.ID;

Extract of the application program of PC2:

(* Declaration of the data and the CONNECT instance, e.g. at the beginning
of an application program *)

VAR
TO_PC1: COMM_CHANNEL; (* Variable which is set by CONNECT *):
CO2: CONNECT; (* Declaration of the CONNECT instance *)
END_VAR;

(* somewhere inside the body of the program *)

CO2(EN_C:=1, PARTNER:='PC1'); (* Invokes the CONNECT instance CO2 and
establishes a communication channel to PC1 *)

IF CO2.ERROR THEN (* It is recommended to define some error handling *):
IF CO2.VALID THEN (* Store reference of the communication channel *)
TO_PC1:= CO2.ID;

These parts of the application program of PC1 and PC2 may be nearly identical. The
communication channel is established by the PC which invokes its CONNECT instance earlier.
The later invoking PC gets the communication channel already established.

7.10.2 Transferring data

Two PCs want to communicate using an already established communication channel. Some
data shall be transferred from PC1 to PC2 using the USEND and URCV function blocks. The
following parts of the applications programs show how this can be achieved. How the
application programs provide and process the data to be transferred is not shown in this
example. The example is given using the Structured Text programming language as defined in
IEC 61131-3.

Extract of the application program of PC1 which uses an instance of the USEND function block
to send the data:

(* Declaration of the data and the USEND instance, e.g. in the definition
of a function block *)

VAR
SENDREQ: BOOL; (* Flag to request the send *)
TO_PC2: COMM_CHANNEL; (* Variable which allows to use the communication

channel to PC2 *)
SDAT1: ARRAY[0..20] OF BYTE; (* Declaration of the data to send *)
SDAT2: REAL;
US1: USEND; (* Declaration of the USEND instance *)
END_VAR;

(* somewhere inside the body of the function block *)

US1(REQ:=SENDREQ, ID:=TO_PC2, R_ID=’PACK1’, SD_1:=SDAT1, SD_2:=SDAT2);
(* Invokes the USEND instance US1 and will send the data on raising

edge of SENDREQ Boolean *)
IF US1.ERROR THEN (* It is recommended to define some error handling *):

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

61131-5  IEC:2000(E) – 75 –

Application program of PC2 which uses an instance of the URCV function block to receive the
data sent by PC1:

(* Declaration of the data and the URCV instance, e.g. in the definition of a function block *)

VAR
TO_PC1: COMM_CHANNEL; (* Variable which allows to use the communication

channel to PC1 *)
RDAT1: ARRAY[0..20] OF BYTE; (* Declaration of the variable where the data

shall be stored, the count of variables and their
data type must correspond with the data sent *)

RDAT2: REAL;
UR1: URCV; (* Declaration of the URCV instance *)
S: REAL; (* Declaration of an arbitrary floating point variable *)
END_VAR;

(* somewhere inside the body of the function block *)

UR1(EN_C:=1, ID:=TO_PC1, R_ID=’PACK1’, RD_1:=RDAT1, RD_2:=RDAT2);
(* Invokes the URCV instance UR1 to wait for data from PC1 *)

IF UR1.NDR THEN (* process the received data *)
BEGIN
S:= S + RDAT2; (* e.g. add the received floating point number to a

variable *)
IF UR1.ERROR THEN (* It is recommended to define some error handling *);

7.10.3 Using a timer to supervise communication

A PC (PC1) wants to request a process function from PC2. It uses an instance of a SEND
function block to transfer the request. It waits for the response from PC2. But if PC2 does not
respond within 5 s, it resets the request. The example is given using the Structured Text
programming language as defined in IEC 61131-3.

Extract of the application program of PC1 which uses an instance of the SEND function block
to request the process function:

(* Declaration of the data and the SEND instance, e.g. in the definition of
a function block *)
VAR
SREQ: BOOL; (* Flag to send the request *)
FCT1: INT; (* Code of the function to request *)
DAT1: REAL; (* 1st parameter of this function *)
RDAT1: INT; (* Response parameter *)

SR1: SEND; (* Instance of the FB SEND *)
M1: RS; (* to hold the IN parameter of the timer *)
T1: TON; (* Timer for timeout control of the SEND *)
END_VAR;

(* somewhere inside the body of the function block *)

SR1 (REQ:= SREQ, (* Request on raising edge of SREQ bool *)
R:= T1.Q, (* Reset on timeout, i.e. the timer fired *)
ID:= TO_PC2, R_ID:= 'ORD1', (* Identifies remote partner and

RCV instance *)
SD_1:= FCT1, SD_2:= DAT1, (* Data for the process function *)
RD_1:= RDAT1); (* Variables for the results *)

M1 (S:= SREQ, (* Set when the request is sent *)
R1:= T1.Q OR SR1.NDR OR SR1.ERROR);

(* Reset when the timer fired or the SEND gets a
good (NDR=1) or a bad response (ERROR=1) *)

T1 (IN:=M1.Q1, (* Hold the timer during the request *)
PT:= T#5s); (* is active for 5 seconds *)

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 76 – 61131-5  IEC:2000(E)

The same program part using the function block diagram as defined in IEC 61131-3 is shown in
figure 47:

TON

IN Q
PT ET

RS

S Q1
R1

>=1SEND

REQ NDR
R ERROR
ID STATUS
R_ID RD_1
SD_1
SD_2

SREQ
T1.Q

TO_PC2
'ORD1'

FCT1
DAT1

RDAT1

SR1 T1M1

T1.Q

T#5s
SREQ

IEC 2293/2000

Figure 47 – Example in function block diagram language

8 Compliance and implementer specific features and parameters

8.1 Compliance

A PC system, as defined in IEC 61131-1, which claims to comply, wholly or partially, with the
requirements of this part of IEC 61131 shall do so only as described below.

A compliance statement shall be included in the documentation accompanying the system, or
shall be produced by the system itself. The form of the compliance statement shall be:

"This system complies with the requirements of this part for the following features:" followed by
a set of compliance tables in the following format:

Table title

Table number Feature number Feature description

Table and feature numbers and descriptions are to be taken from the tables given in the
relevant subclauses of this part of IEC 61131. The table titles and the relevant tables are to be
taken from the following table 51.

Table 51 – Table titles and relevant tables for compliance

Table title For features in table

PC status Tables 1 to 9

Application specific functions Tables 10 to 20, except 15

PC communication function blocks Table 21

A PC system complying with the requirements of this part of IEC 61131 shall

a) not require the inclusion of substitute or additional features in order to accomplish any of
the features specified in this part;

b) be accompanied by a document that specifies the values of all implementer specific
features or parameters as listed in the following table and in the table ‘Implementation
specific features and parameters’ of the appropriate annex;

c) be accompanied by a document that separately describes any communication relevant
feature that is prohibited or not specified in this part. Such features shall be described as
being "extensions to the PC communication as defined in IEC 61131-5";

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

61131-5  IEC:2000(E) – 77 –

d) not use any of the function or function block names defined in clause 7 for implementer
defined features whose functionality differs from that described there.

8.2 Implementation specific features and parameters

Implementation specific features and parameters defined in this part of IEC 61131 and the
most relevant subclause for each are listed in the following table 52.

Table 52 – Implementation specific features and parameters

Subclause Implementation specific features and parameters

6.1 The definition of major and minor faults of the subsystems of the PC

6.1.8 The number of the subsystems of the PC providing status information

6.1.8 The types of the subsystems of the PC providing status information

6.1.8 The maximum size of the string containing names of the PC and of its subsystems

6.1.8 The semantic of the values in the sub-element STATE for the implementer specific subsystems

6.1.8 The size of the sub-element SPECIFIC of the status information

6.1.8 The semantic of the sub-element SPECIFIC of the status information

6.2.2 Restrictions of the access of variables with direct representation

6.2.2 The algorithm to access a variable with direct representation

6.2.2 The conditions (size, location, etc.) under which each data type supported by the PC can be
uninterruptedly accessed

6.2.6 The supported values of I/O state

6.2.6 The definition of the outputs if the implementer specified value is requested

6.2.6 The definition of the mechanisms to specify the outputs if the user specified value is requested

6.2.7 Other language elements, for example, function types or function block types which are loadable and
the conditions and restrictions for downloading and uploading these

6.2.7 What other clients can do with a PC when one client is downloading it

7.2 The COMM_CHANNEL type used at the ID input of the communication function blocks identifying the
remote communication partner

7.2 Data type of the VAR_ADDR output of the REMOTE_VAR function and the restrictions using the
output of the REMOTE_VAR function

7.2 Name scopes the implemeter supports for use at SCOPE parameter of the REMOTE_VAR function

7.2 Mapping of the implementer specific name scopes onto the communication system

7.2 The number of SD_i, RD_i, and VAR_i parameters which are supported with one invocation of a
communication function block

7.2 The meaning of codes less than –1 or greater than 20 of the STATUS output of the communication
function blocks

7.2 Additional means (if there are some) to control the time by which the communication channel is
established, if not explicitly controlled using the CONNECT function block

7.3 The used length and the semantics of the additional status information of the LOCAL output of the
FB STATUS and FB USTATUS

7.9 How the user can get the information of the communication channel for the use at the ID input of the
communication function blocks

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 78 – 61131-5  IEC:2000(E)

Annex A
(normative)

Mapping to ISO/IEC 9506-5

A.1 General

This annex specifies the mapping of the PC communication functions to the MMS objects and
services defined in ISO/IEC 9506-1 and extensions defined in ISO/IEC 9506-5. This mapping
shall be used when a PC is communicating in the abstract syntax defined in ISO/IEC 9506-5.

Normative references

ISO 7498-1:1994, Information technology – Open Systems Interconnection – Basic Reference
Model: The Basic Model

ISO/IEC 9506-1:1990, Industrial automation systems – Manufacturing Message Specification –
Part 1: Service definition
Amendment 1:1993, Data exchange

ISO/IEC 9506-2:1990, Industrial automation systems – Manufacturing Message Specification –
Part 2: Protocol specification
Amendment 1:1993, Data exchange

ISO/IEC 9506-5:1999, Industrial automation systems – Manufacturing Message Specification –
Part 5: Companion standard for programmable controllers

Definitions from other publications

ISO 7498-1

application entity (AE)

ISO/IEC 9506-1

domain

program invocation (PI)

server

Virtual Manufacturing Device (VMD) (clause 7)

Abbreviations

Cnf This is the confirmation primitive of a communication service

Ind This is the indication primitive of a communication service

Req This is the request primitive of a communication service

Rsp This is the response primitive of a communication service

VMD Virtual Manufacturing Device

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 79 –

A.2 Application specific functions

A.2.1 Device verification

A PC can provide some very general status to a requesting device via the MMS Status service.
The contents of this status is defined by MMS. The implementer can provide Local Detail (bit
string with a maximum length of 128 bits) that contains additional information. The PC can
initiate an unsolicited status report of this same information using the MMS UnsolicitedStatus
service.

NOTE The 16 lowest numbered bits of Local Detail may provide, for example the same information as in the
P_PCSTATE variable (see table 2 and 6.1.8).

A PC can provide detailed status information about the PC and its subsystems via MMS Named
Variables or MMS Unnamed Variables or both (see 6.1.8). These variables can be read using
the MMS Read service. For the specification of these variables (see 6.1.8).

A.2.2 Data acquisition

Data contained in a PC is presented as PC variables. Selected PC variables are mapped onto
MMS Named Variables, using the access path language construct (see A.3.2). Additionally,
variables with direct representation are mapped onto MMS Unnamed Variables, with
implementer specified restrictions. The content of these variables can be provided to a client
using the MMS Read and InformationReport services.

A.2.3 Parametric control

Parametric control is when the operation of the PC is directed by writing values to PC
variables. This change in operation is determined by either the application program or other
local mechanisms. The MMS Write service is used to write a new value to a PC variable.

A.2.4 Interlocked control

Interlocked control is when the client requests the server to execute an application operation
and to inform the client of the result of the operation. The SEND and RCV function blocks are
used to provide this function. See A.4 for the mapping of these function blocks onto MMS
objects and services.

A.2.5 Synchronization between user applications

User applications may need a synchronization service. This PC function is provided by the
communication function interlocked control (see 6.2.3 and A.2.4).

A.2.6 Alarm reporting

The PC can have the ability to signal alarm messages to a client when a predetermined
condition occurs. The ALARM and NOTIFY function blocks are used to provide this function.
See A.4 for the mapping of these function blocks onto MMS objects and services.

A.2.7 Application program execution and I/O control

Program execution and I/O control uses the language elements configuration and resource of
IEC 61131-3 (see 6.2).

The configuration and resource are mapped onto MMS Program Invocation objects.

The state of the I/O (inputs and outputs) associated with a resource is specified using the
various MMS services which operate on Program Invocations using the I/O State parameter, as
defined in ISO/IEC 9506-5.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 80 – 61131-5  IEC:2000(E)

A.2.8 Application program transfer

Application program transfer allows the client to upload the complete contents of the
programmable memory or portions thereof for archiving or verification or to download it for
restoring the PC to a known state. The portions of the programmable memory which can be
uploaded or downloaded were specified in 6.2.7. These loadable units are mapped onto the
MMS Domain object. They are transferred using the MMS Domain services.

A.2.9 Connection management

The MMS Environment and General Management services are used to manage the
connections.

A.3 PC object mapping

ISO/IEC 9506 supports an object-oriented view to the communication. A PC communicating in
the abstract syntax of ISO/IEC 9506-5 is mapped onto a virtual device. This virtual device
contains all objects visible to a remote communication partner and services all requests coming
from a remote communication partner.

A.3.1 VMD

One PC, a part of a PC, or a set of several PCs may be mapped onto one VMD. The
communication to this VMD shall conform to ISO/IEC 9506-5.

The implementer shall specify this mapping. This part of IEC 61131 does not define any
restrictions to the attributes of the VMD.

A.3.2 Named Variables

Each access path is mapped onto one MMS Named Variable. The attributes of the MMS
Named Variable are as follows:

Object: Named Variable

Attribute: Variable Name – This shall be the access name from the access path declaration.
If the access path definition references variables with direct representation, program inputs
or outputs, or global variables of configurations or resources (see 2.7.1 of IEC 61131-3),
the name shall have VMD-specific scope. If the access path definition is at program level
(see 2.5.3 of IEC 61131-3), the name shall be domain specific of the domain which is
associated with the program which contains the referenced variable (see A.2.9).

Attribute: Reference to Access Control List – If the access path contains the READ_ONLY
language element this object shall reference the Access Control List object M_ReadOnly
otherwise M_NonDeletable.

Attribute: Type Description – This shall be the data type as specified in the access path
declaration mapped to MMS according to table A.1.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 81 –

Table A.1 – Type description mapping

No. Access path data type keyword MMS type description class and size Notes

1 BOOL boolean

2 SINT integer 8 4

3 INT integer 16 4

4 DINT integer 32 4

5 LINT integer 64 4

6 USINT unsigned 8 4

7 UINT unsigned 16 4

8 UDINT unsigned 32 4

9 ULINT unsigned 64 4

10 REAL floating-point 32,8 4

11 LREAL floating-point 64,11 4

12 TIME unsigned 32 4

13 DATE binary-time true 1

14 TIME_OF_DAY, TOD binary-time false 1

15 DATE_AND_TIME, DT binary-time true 1

16 STRING[N] octet-string N 2

17 BYTE bit-string 8 4

18 WORD bit-string 16 4

19 DWORD bit-string 32 4

20 LWORD bit-string 64 4

21 enumerated_specification integer 3

22 subrange_specification basic data type of the subrange

23 ARRAY array

24 STRUC structure

NOTE 1 The values true and false indicate that data is included or not included, respectively.

NOTE 2 The implementer shall specify the maximum length permitted, the given size N is the maximum size
of the string.

NOTE 3 The size of the integer shall be selected to hold all possible enumerated values.

NOTE 4 The given size is fixed.

Variables may be addressed using the REMOTE_VAR function. The mapping of the
parameters SCOPE and SC_ID are as follows:

Table A.2 – Mapping of the SCOPE and SC_ID parameter

Value of SCOPE parameter MMS name scope Usage of the SC_ID parameter

0 VMD Not used

1 VMD Not used

2 Domain Domain name

3 Domain Domain name

10 VMD Not used

11 Domain Domain name

12 Application
Association

AA name

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 82 – 61131-5  IEC:2000(E)

A.3.3 Unnamed Variables

Object: Unnamed Variable

Attribute: Address – The Kind of Address parameter has the value ‘Symbolic Address’. The
value of the Symbolic Address parameter shall be the direct representation of the PC
variable.

Attribute: Type Description – This shall be the data type derived from the size prefix of the
direct representation mapped according to the following table.

Table A.3 – Size prefix of direct representation

Number Size prefix of direct representation MMS type description class and size

1 (none) boolean

2 X boolean

3 B bit-string 8

4 W bit-string 16

5 D bit-string 32

6 L bit-string 64

NOTE The programming languages of IEC 61131-3 define the means of representing variables
symbolically, or alternatively in a manner which directly represents the association of the data
element with physical or logical locations in the programmable controller’s input, output, or memory
structure. The Unnamed Variable object is used to access the variables with direct representation.

A.3.4 Program Invocations

Object: Program Invocation

Attribute: Program Invocation Name – This shall be the name of the associated
configuration or resource.

Attribute: Reusable – This shall have the value TRUE.

Attribute: Additional Detail – This consists of the following attributes defined in ISO/IEC
9506-5:

1. Independent – This attribute has the value TRUE if the associated PC language
element is a configuration, otherwise it has the value FALSE.

2. Constraint: Independent = FALSE

Program Invocation Reference – This attribute has the value of the identifier of the
configuration.

3. I/O state

The implementer may define additional means to create additional Program Invocation objects.

A.3.5 Domains

Object: Domain

Attribute: Domain Name – This shall be the name of the associated loadable unit.

Attribute: List of Subordinate Objects – If the Named Variable P_DDATE is supported by
the implementation, it shall appear in this attribute.

The implementer may define additional means to create additional Domain objects.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 83 –

A.4 Communication function block mapping to MMS objects and services

The communication function blocks are described using state diagrams with transitions and
actions. In this part of the annex, all transitions and actions which refer to the PC commu-
nication system are mapped onto ISO/IEC 9506-5.

A.4.1 Using communication channels

Only one-to-one communication channels are provided with ISO/IEC 9506-5.

All requests and all responses mentioned in the following clauses are transmitted using the
application association which is referenced by the ID parameter of the communication function
blocks. Indications or confirmations have effect to a certain communication function block
instance only if they were received using the application association referenced by its ID
parameter.

A.4.2 Rules for data type compatibility

The following rules shall apply, when a data protocol unit is received and the action requests to
verify if the data type of the received variable object matches with the data type of an
application program variable programmed at an RD_i output parameter of the receiving
function block.

a) If the application program variable programmed at the RD_i parameter is of a signed or
unsigned integer data type, any received variable of signed or unsigned integer type, the
value of which can be stored without loss of information shall pass the type check. The
application program variable shall get the value of the received variable object.

b) If the application program variable programmed at the RD_i parameter is of BYTE, WORD,
DWORD, or LWORD data type, any received variable of bit-string type with a length of
which is not bigger than the bit length of the application program variable shall pass the
type check. The application program variable shall get the value of the received variable
object, storing bit 0 of the received bit-string into bit 0 of the application program variable
and so on. The application program variable is filled up with 0 if its length is bigger.

c) If the application program variable programmed at the RD_i parameter is of STRING data
type, any received variable with a byte length of which is not bigger than the byte length of
the application program variable shall pass the type check. The application program
STRING variable shall get the value of the received variable object, storing byte 1 of the
received variable into byte 1 of the application program STRING variable and so on. The
length of the string shall be set to the count of the received and stored bytes.

d) If the received variable object has the data type octet string the type check shall be passed,
if the application program variable has a byte length which is not smaller than the length of
the received octet string. The application program variable shall get the value of the
received octet string, storing byte 1 of the received variable into byte 1 of the application
program variable and so on. The application program variable is filled up with 0 if its length
is bigger.

e) If the application program variable programmed at the RD_i parameter is of a data type not
mentioned in rule a) to c) and rule d) does not apply, the type check shall be passed if the
data type of the received MMS variable object corresponds with the data type of the
application program variable using tables A.1 and A.3. The application program variable
shall get the value of the received variable object.

A.4.3 Device verification

The STATUS function block uses the Status service as a client.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 84 – 61131-5  IEC:2000(E)

Table A.4 – Transition mapping of the STATUS state diagram

Transition Condition

3 Positive response from remote communication partner:

Status.Cnf(+)

4 Negative response from remote communication partner
received or communication problems detected:

Status.Cnf(–) or
lower layers indicate error

Table A.5 – Action mapping for STATUS state diagram

State Actions

WAITING Request status information from remote device:

Status.Req:
Extended Derivation: FALSE

HAVE_DATA Deposit status information in instance:

Status.Cnf(+):
VMD Logical Status to LOG output
VMD Physical Status to PHYS output
Local Detail to LOCAL output

The USTATUS function block uses the Unsolicited Status service as a receiver.

Table A.6 – Transition mapping of USTATUS state diagram

Transition Condition

4 Status information received from remote communication
partner:

UnsolicitedStatus.Ind

5 Communication problems detected:

Lower layers indicate error

Table A.7 – Action mapping of USTATUS state diagram

State Actions

HAVE_DATA Deposit status information in instance:

UnsolicitedStatus.Ind:
VMD Logical Status to LOG output
VMD Physical Status to PHYS output
Local Detail to LOCAL output

A.4.4 Polled data acquisition

The READ function block uses the Read service as a client.

The strings and the outputs of the REMOTE_VAR function given in the VAR_i input as
identifiers of the variables to be read are mapped onto the Variable Access Specification
parameter of the Read request. Each identifier of a VAR_i input forms one element of the List
of Variable selection.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

61131-5  IEC:2000(E) – 85 –

If the string of a VAR_i input starts with a "%" character, an Unnamed Variable object with a
Symbolic Address shall be read. The string of the VAR_i input is used in the symbolicAddress
parameter. Otherwise a VMD-specific variable shall be read. The Name Scope parameter of
the Object Name parameter shall be set to VMD-specific. The string is used as the identifier.

If a REMOTE_VAR function output is used to identify the remote variable to be read, the Name
Scope parameter of the Object Name parameter shall be set as given in the SCOPE input of
the REMOTE_VAR function and mapped using table A.2. If the scope is VMD-specific or AA-
specific, the value of the NAME input is used as the identifier. If the scope is domain specific
the value of the SC_ID input shall be used as identifier of the Domain, and the value of the
NAME input as item identifier.

If a derived variable is to be read, the Alternate Access option of the Variable Access
Specification is used to describe which sub-element of a structure or element of an array is to
be read. The List of Alternate Access Selections shall contain exactly one element. If the SUB
input of the REMOTE_VAR function is an integer (signed or unsigned), it shall be used as the
Index of the array element to be read. If the SUB input is a not empty string, it shall be used as
the component name of the sub-element to be read.

Table A.8 – Transition mapping of the READ state diagram

Transition Condition

3 Positive response from remote communication partner:

Read.Cnf(+)

4 Negative response from remote communication partner
or other communication problems detected:

Read.Cnf(–) or
lower layers indicate error

Table A.9 – Action mapping for READ state diagram

State Actions

WAITING Request variables from remote device:

Read.Req
Specification With Result= FALSE
Variable Access Specification

CHECKING Verify data type match:

Check all elements of the List of Access Results against the RD_i output
declaration:

If Success is false, the check fails
If the Kind of Data parameter does not match (see A.4.2) with the data
type of the appropriate RD_i output, the check fails.
If the check of one data element fails, the complete check fails.

HAVE_DATA Deposit data:

Deposit all data elements of the List of Access Results in the RD_i outputs

A.4.5 Programmed data acquisition

The USEND function block uses the Information Report service as a requester.

One instance of an USEND function block defines a Named Variable object with AA-specific
scope. The attributes of this object are as follows:

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 86 – 61131-5  IEC:2000(E)

Object: Named Variable

Attribute: Variable Name – The string given at the R_ID input parameter is the name of the
variable with AA-specific scope.

Attribute: Reference to Access Control List – This object shall reference the Access Control
List object M_ReadOnly.

Attribute: Type Description – If only one send data parameter is given, the type of the
Named Variable object is exactly the type of the send data using tables A.1 and A.3. If more
than one send data parameter is programmed, the type of the Named Variable object is a
structure containing the send data as components in the same order and with the same
type as given as send data parameters.

Table A.10 – Transition mapping of the USEND state diagram

Transition Condition

3 Communication system indicates "Sent to Remote Communication partner"

Lower Layers indicate no errors

4 Communication system indicates "Cannot Send to Remote Communication partner" or
other communication problems detected:

Lower layers indicate error

Table A.11 – Action mapping for USEND state diagram

State Actions

TRYING Send data given at the SD_i inputs to remote communication partner:

InformationReport.Req
Variable Access Specification

Kind Of Variable= NAMED
Name

Name Scope= AA-SPECIFIC
Item Identifier= Content of R_ID input

List of Access Results

The URCV function block uses the Information Report service as a receiver.

The string given in the R_ID input is used as the name of the Named Variable object with AA-
specific scope which shall be received by the instance of the URCV function block. If only one
data output RD_1 is given the type of this parameter shall be checked with the type of the
received variable, see A.4.2. If more than one data output RD_1 ... RD_n is given, the type of
the received variable object shall be a structure containing the data for the different parameters
as components in the same order and with the same type as given in the function block
instance.

Table A.12 – Transition mapping of URCV state diagram

Transition Condition

4 Data from remote communication partner received:

InformationReport.Ind
Variable Access Specification

List of Variable
Variable Specification

Name
Name Scope= AA-SPECIFIC

Item Identifier= Value of R_ID parameter
List of Access Results

5 Communication problems detected:

Lower layers indicate error

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 87 –

6 Data types of SD_i of USEND and RD_i of URCV match:

Data parameter of the Access Result parameter match with the count and data type of the RD_i
outputs of the URCV instance (see A.4.2).

7 Data types of SD_i of USEND and RD_i of URCV do not match:

Data parameter of the Access Result parameter do not match with the count and data type of
the RD_i outputs of the URCV instance (see A.4.2).

Table A.13 – Action mapping for URCV state diagram

State Actions

CHECKING Verify data type match:

Check all elements of the List of Access Results against the RD_i output declaration:
If Success is false, the check fails

 If the Kind of Data parameter does not match with the data type of the
appropriate RD_i output (see A.4.2), the check fails
If the check of one data element fails, the complete check fails

HAVE_DATA Deposit data:

Deposit all data elements of the List of Access Results in the RD_i outputs

The BSEND function block uses the Write service as a client.

The Named Variable object with AA-specific scope which is written is defined by the
corresponding instance of the BRCV function block. The attributes of this object are as follows:

Object: Named Variable

Attribute: Variable Name – The string given at the R_ID input parameter is the name of the
variable with AA-specific scope.

Attribute: Reference to Access Control List – This object shall reference the Access Control
List object M_ReadOnly.

Attribute: Type Description – The data type is a structure containing an index of data type
unsigned integer 32, a more_follows mark of data type boolean and the data to send as an
octet string.

structure {
components {

{component Name = "Index",
 component Type = unsigned -32},
{component Name = "More_Follows",
 component Type = boolean},
{component Name = "Data",
 component Type = octet-string} } }

Table A.14 – Transition mapping of the BSEND state diagram

Transition Condition

3 Positive confirmation received and more data to send:

Write.Cnf(+)

4 Negative confirmation received or communication problems detected:

Write.Cnf(–) or
lower layers indicate error

6 Positive confirmation received and no more data to send:

Write.Cnf(+)

9 Communication problems detected:

Lower layers indicate error

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 88 – 61131-5  IEC:2000(E)

Table A.15 – Action mapping for BSEND state diagram

State Actions

SEND_FIRST Send first block of data given at the SD_1 input to remote communication partner, send
a maximum of LEN bytes in total:

Write.Req
Variable Access Specification
List of Data with

component Index= 1
(= element number of the first byte in the byte array to send)

component More_Follows= true
if not all data to send are contained in component Data

component Data= the first bytes out of the data to send

SEND_NEXT Send next block of data given at the SD_1 input to remote communication partner, send
a maximum of LEN bytes in total:

Write.Req
Variable Access Specification
List of Data with

 component Index= Element number of the first byte of the octet string
in the byte array to send

component More_Follows= true
if not all data still to send are contained in component Data

component Data= bytes out of the data to send starting with the byte
the number of which is contained in component Index

CANCEL Stop the data transfer:

Write.Req
Variable Access Specification
List of Data

with component Index=0
with component More_Follows= false
with component Data= null

The BRCV function block uses the Write service as a server.

The string given in the R_ID input is the name of the Named Variable object with AA-specific
scope, which is defined by the instance of the BRCV function block.

Table A.16 – Transition mapping of BRCV state diagram

Transition Condition

4 Data received from remote communication partner:

Write.Ind

5 More data follows is true:

Component More_Follows= true

6 More data follows is false:

Component More_Follows= false

7 Indication to cancel data transfer received:

Write.Ind with component Index= 0

9 Communication problems detected:

Lower layers indicate error

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 89 –

Table A.17 – Action mapping for BRCV state diagram

State Actions

RECEIVING Verify data type match:

The check fails if the length of octet string of the just received component Data plus
the value contained in the just received component Index minus 1 is greater than
the element count of the RD_1 array of byte

RESP_MORE Send positive response:

Write.Rsp(+)

RESP_LAST Send positive response:

Write.Rsp(+)

HAVE_IT Deposit data:

Store the bytes of the component Data successively starting with the element
whose number is given in the component Index

CANCELLED Send positive response:

Write.Rsp (+)

A.4.6 Parametric control

The WRITE function block uses the Write service as a client.

The strings and the outputs of the REMOTE_VAR function given in the VAR_i input as
identifiers of the variables to be written are mapped onto the Variable Access Specification
parameter of the Write request. Each identifier of a VAR_i input forms one element of the List
of Variable selection.

If the string of a VAR_i input starts with a "%" character, an Unnamed Variable object with a
Symbolic Address shall be written. The string of the VAR_i input is used in the
symbolicAddress parameter. Otherwise a VMD-specific variable shall be written. The Name
Scope parameter of the Object Name parameter shall be set to VMD-specific. The string is
used as the identifier.

If a REMOTE_VAR function output is used to identify the remote variable to be written, the
Name Scope parameter of the Object Name parameter shall be set as given in the SCOPE
input of the REMOTE_VAR function and mapped using table A.2. If the scope is VMD-specific
or AA-specific, the value of the NAME input is used as the identifier. If the scope is domain
specific the value of the SC_ID input shall be used as identifier of the Domain, and the value of
the NAME input as item identifier.

If a derived variable is to be written, the Alternate Access option of the Variable Access
Specification is used to describe which sub-element of a structure or element of an array is to
be written. The List of Alternate Access Selections shall contain exactly one element. If the
SUB input of the REMOTE_VAR function is an integer (signed or unsigned), it shall be used as
Index of the array element to be written. If the SUB input is a not empty string, it shall be used
as component name of the sub-element to be written.

The data given at the SD_i inputs give the List of Data parameter of the Write request.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 90 – 61131-5  IEC:2000(E)

Table A.18 – Transition mapping of the WRITE state diagram

Transition Condition

3 Positive response of remote communication partner:

Write.Cnf(+)

4 Negative response from remote communication partner
or other communication problems detected:

Write.Cnf(–) or
lower layers indicate error

Table A.19 – Action mapping for WRITE state diagram

State Actions

WAITING Request to write variables into remote communication
partner:

Write.Req
Variable Access Specification
List of Data

A.4.7 Interlocked control

The SEND function block uses the Exchange Data service as a client.

The string given in the R_ID input is used as Item Identifier of the AA-specific data exchange
object. The data inputs SD_1 ... SD_n form the List of Request Data parameter of the Data
Exchange request in the same order and with the same type as given in the SEND function
block invocation. The data of the List of Response Data parameter of the Data Exchange
confirmation is stored in the data outputs RD_1 ... RD_m in the same order as given in the
SEND function block invocation.

Table A.20 – Transition mapping of the SEND state diagram

Transition Condition

3 Positive response from RCV:

ExchangeData.Cnf(+)

4 Negative response from RCV:

ExchangeData.Cnf(–)

5 Data types of the received data and RD_1 to RD_m match:

Data of the List of Response Data parameter and RD_1 to RD_m match

6 Data type of the received data and RD_1 to RD_m mismatch

Data of the List of Response Data parameter and RD_1 to RD_m
mismatch

8 Positive or negative response to the reset request:

Cancel.Cnf

9 Positive or negative response from RCV:

ExchangeData.Cnf

12 Communication problems detected:

Lower layers indicate error

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 91 –

Table A.21 – Action mapping for SEND state diagram

State Actions

SEND_AND_WAIT Send Data to RCV:

ExchangeData.Req
Data Exchange Name

Name Scope= AA-SPECIFIC
Item Identifier= Value of R_ID parameter

List of Request Data

CHECKING Verify data type match:

Check data type of List of Response Data parameter of the
ExchangeData.Cnf(+), see A.4.2

CANCEL Request to reset RCV:

Cancel.Req
Original Invoke ID

The RCV function block uses the Exchange Data service as a server.

One instance of an RCV function block defines a Data Exchange object with AA-specific scope.
The attributes of this object are as follows:

Object: Data Exchange

Attribute: Data Exchange Name – The string given at the R_ID input parameter is the name
of the Data Exchange object with AA-specific scope.

Attribute: Reference to Access Control List – This object shall reference an Access Control
List object M_NonDeletable.

Attribute: List of Request Type Specifications – The List of Request Type Specifications
contains exactly the types of the receive data given at the RD_i outputs using tables A.1
and A.3.

Attribute: List of Response Type Specifications – The List of Response Type Specifications
contains exactly the types of the send data given at the SD_i inputs using tables A.1 and
A.3.

Attribute: Linked – This attribute shall have the value FALSE.

Table A.22 – Transition mapping of RCV state diagram

Transition Condition

4 When data received from SEND:

ExchangeData.Ind
Data Exchange Name

Name Scope= AA-SPECIFIC
Item Identifier= Value of R_ID parameter

List of Request Data

5 Data types of received data and RD_1 to RD_n match:

Data of the List of Request Data parameter and RD_1 to RD_n match

6 Data types of the received data and RD_1 to RD_n mismatch:

Data of the List of Request Data parameter and RD_1 to RD_n mismatch

8 When reset is requested by SEND:

Cancel.Ind
Original Invoke ID

9 Communication problems detected:

Lower layers indicate error

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 92 – 61131-5  IEC:2000(E)

Table A.23 – Action mapping of RCV state diagram

State Actions

CHECKING Verify data type match:

Check result of the verification of the conformance of the List of
Request Type Specification attribute and the List of Request Data
parameter (see A.4.2).

NAK_ERROR Send negative response to SEND:

ExchangeData.Rsp(–)
Error Class= DEFINITION
Error Code= TYPE-INCONSISTENT

NAK_BUSY Send negative response to SEND:

ExchangeData.Rsp(–)
Error Class= SERVICE
Error Code= OBJECT-STATE-CONFLICT

NAK_CANCELLED Send positive response to the reset request and then send
negative response to SEND:

Cancel.Rsp(+)
ExchangeData.Rsp(–)
Error Class= SERVICE-PREEMPT
Error Code= CANCEL

RESPONDING Send positive response with user data to SEND:

ExchangeData.Rsp(+)
List of Response Data= Data given at the SD_i inputs

NAK_DIS Send negative response to SEND:

ExchangeData.Rsp(–)
Error Class= ACCESS
Error Code= OBJECT-NON-EXISTENT

A.4.8 Programmed alarm report

The NOTIFY and the ALARM function block use the Event Notification service as a requester.
Additionally, the ALARM function block uses the Acknowledge Event Notification service as a
server.

One instance of a NOTIFY or an ALARM function block defines a Named Variable object with
AA-specific scope. This variable object shall be transmitted in a Read response of the
Confirmed Service Response selection of the Action Result parameter. The attributes of this
object are as follows:

Object: Named Variable

Attribute: Variable Name – The string given at the EV_ID input parameter is the name of
the variable with AA-specific scope.

Attribute: Reference to Access Control List – This object shall reference an Access Control
List object M_ReadOnly.

Attribute: Type Description – If only one send data parameter is given, the type of the
Named Variable object is exactly the type of the send data using tables A.1 and A.3. If more
than one send data parameter is programmed, the type of the Named Variable object is a
structure containing the send data as components in the same order and with the same
type as given as send data parameters.

One instance of a NOTIFY or an ALARM function block defines a Event Condition object with
AA-specific scope. The attributes of this object are as follows:

Object: Event Condition

Attribute: Event Condition Name – This attribute shall have the value of the EV_ID input
parameter.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

61131-5  IEC:2000(E) – 93 –

Attribute: Event Condition Class – This attribute shall have the value MONITORED.

Attribute: Reference to Access Control List – This object shall reference an Access Control
List object M_NonDeletable.

Attribute: Priority – The value of this attribute shall be specified by the implementer.

Attribute: Severity – This attribute is taken from the SEVERITY input parameter of the
function block invocation.

Attribute: List of Event Enrolment Reference – This attribute contains the reference to the
Event Enrolment object predefined by this function block instance.

Attribute: Enabled – This attribute is taken from the EN_R input parameter of the function
block invocation.

Attribute: Alarm Summary Reports – This attribute shall have the value FALSE.

Attribute: Monitored Variable Reference – This attribute shall have the value
UNSPECIFIED.

Attribute: Evaluation Interval – This attribute is not supported, because the Parameter CBB
and CEI is not requested in any conformance class of ISO/IEC 9506-5.

One instance of a NOTIFY or an ALARM function block defines a Event Enrolment object with
AA-specific scope. The attributes of this object are as follows:

Object: Event Enrolment

Attribute: Event Enrolment Name – This attribute shall have the value of the EV_ID input
parameter.

Attribute: Reference to Access Control List – This object shall reference an Access Control
List object M_NonDeletable.

Attribute: Enrolment Class – This attribute shall have the value NOTIFICATION.

Attribute: Event Condition Reference – The Event Condition predefined by this function
block instance is referenced.

Attribute: Notification Lost – The value of this attribute is specified by the implementer.

Attribute: Event Action Reference – This attribute contains the reference to the Event Action
object predefined by this function block instance.

Attribute: Duration – This attribute has the value PERMANENT.

Attribute: Alarm Acknowledgement Rule – This attribute shall have the value NONE, if a
NOTIFY function block is programmed. It shall have the value ACK-ALL, if an ALARM
function block is programmed.

If one or more event data inputs SD_i are programmed at the instance of a NOTIFY or an
ALARM function block, this instance defines an Event Action object with AA-specific scope.
The attributes of this object are as follows:

Object: Event Action

Attribute: Event Action Name – This attribute shall have the value of the EV_ID input
parameter.

Attribute: Reference to Access Control List – This object shall reference an Access Control
List object M_NonDeletable.

Attribute: Confirmed Service Request – The Read service is used as Event Action. The
service arguments shall be:

Attribute: Specification with Result – FALSE

Attribute: Variable Access Specification – This argument shall specify the associated
variable of the function block instance.

Attribute: List of Modifier – This attribute shall be empty.

Attribute: List of Event Enrolment Reference – This attribute contains the reference to the
Event Enrolment object predefined by the function block instance.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 94 – 61131-5  IEC:2000(E)

Table A.24 – Transition mapping of the NOTIFY state diagram

Transition Condition

4 Communication system indicates "Sent to remote
communication partner":

Lower layers indicated no error

5 Communication system indicates "Cannot send to remote
communication partner":

Lower layers indicate error

Table A.25 – Action mapping for NOTIFY state diagram

State Actions

TRY_UP If the Event Condition is in DISABLED state, an error with status code 10 shall be reported,
otherwise request to report the coming alarm to the remote communication partner:

EventNotification.Req
Event Enrolment Name

Name Scope= AA-SPECIFIC
Item Identifier= Value of EV_ID parameter

Event Condition Name
Name Scope= AA-SPECIFIC

Item Identifier= Value of EV_ID parameter
Severity= Value of SEVERITY parameter
Current State= ACTIVE
Alarm Acknowledge Rule= NONE
Action Result

Event Action Name
Name Scope= AA-SPECIFIC

Item Identifier= Value of EV_ID parameter
Success
Confirmed Service Response

TRY_DOWN If the Event Condition is in DISABLED state, an error with status code 10 shall be reported,
otherwise request to report the going alarm to the remote communication partner:

EventNotification.Req
Event Enrolment Name

Name Scope= AA-SPECIFIC
Item Identifier=Value of EV_ID parameter

Event Condition Name
Name Scope= AA-SPECIFIC

Item Identifier=Value of EV_ID parameter
Severity= Value of SEVERITY parameter
Current State= IDLE
Transition Time= Time the raising edge of the EVENT parameter was detected
Alarm Acknowledge Rule= NONE
Action Result

Event Action Name
Name Scope= AA-SPECIFIC

Item Identifier= Value of EV_ID parameter
Success
Confirmed Service Response

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

61131-5  IEC:2000(E) – 95 –

Table A.26 – Transition mapping of the ALARM state diagram

Transition Condition

6 Receive acknowledge of the report of the coming alarm:

AcknowledgeEventNotification.Ind
Event Enrolment Name

Name Scope= AA-SPECIFIC
Item Identifier= Value of EV_ID parameter

Acknowledged State=ACTIVE

7 Receive acknowledge of the report of the going alarm

AcknowledgeEventNotification.Ind
Event Enrolment Name

Name Scope= AA-SPECIFIC
Item Identifier= Value of EV_ID parameter

Acknowledged State=IDLE

Table A.27 – Action mapping for ALARM state diagram

State Actions

U1, U2, U3 If the Event Condition is in DISABLED state, an error with status code 10 shall be
reported, otherwise request to report the coming alarm to the remote communication
partner:

EventNotification.Req
Event Enrolment Name

Name Scope= AA-SPECIFIC
Item Identifier= Value of EV_ID parameter

Event Condition Name
Name Scope= AA-SPECIFIC

Item Identifier= Value of EV_ID parameter
Severity= Value of SEVERITY parameter
Current State= ACTIVE NO-ACK-A
Transition Time= Time the raising edge of the EVENT parameter was detected
Alarm Acknowledge Rule= ACK-ALL
Action Result

Event Action Name
Name Scope= AA-SPECIFIC

Item Identifier=Value of EV_ID parameter
Success
Confirmed Service Response

ACK_UP Confirm received acknowledgement positively:

AcknowledgeEventNotification.Rsp(+)
Set the states of all event enrolments identified by the EV_ID parameter to ACTIVE
ACKED

D2 If the Event Condition is in DISABLED state, an error with status code 10 shall be
reported, otherwise request to report the going alarm to the remote communication
partner,

see state U1 but:
EventNotification.Req

Current State= IDLE NO_ACK_A

D1 If the Event Condition is in DISABLED state, an error with status code 10 shall be
reported, otherwise request to report the going alarm to the remote communication
partner,

see state U1 but:
EventNotification.Req

Current State= IDLE ACKED

ACK_DOWN Confirm received acknowledgement positively:

AcknowledgeEventNotification.Rsp(+)
Set the states of all event enrolments identified by the EV_ID parameter to IDLE ACKED

ERROR Confirm received acknowledgement negatively:

AcknowledgeEventNotification.Rsp(–)
Error Class= SERVICE
Error Code= OBJECT-STATE-CONFLICT

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

– 96 – 61131-5  IEC:2000(E)

A.4.9 Connection management

The CONNECT function block uses the Initiate service and the Conclude service as a client
and a server.

The PARTNER input is used to identify the application entity to which a connection is
requested.

Table A.28 – Transitions of the CONNECT state diagram

Transition Condition

4 Receive a positive confirmation to the request to establish a
new connection from the remote communication partner:

Initiate.Cnf(+)

5 Receive a negative confirmation to the request to establish
a new connection from the remote communication partner:

Initiate.Cnf(–)

6 Receive a positive confirmation to the request to conclude
the connection from the remote communication partner:

Conclude.Cnf(+)

7 Receive a negative confirmation to the request to conclude
the connection from the remote communication partner:

Conclude.Cnf(–)

8 Loss of connection, i.e. loss of the application association

9 Receive a request to establish a new connection to the
remote communication partner:

Initiate.Ind

10 Receive a request to conclude the connection to the remote
communication partner:

Conclude.Ind

Table A.29 – Action mapping for CONNECT state diagram

State Actions

CHECKING_1 Check if the connection can be established:

Check if the constraints identified in the Initiate.Ind
primitive can be accepted, or if alternate values can be
proposed

DENY Send a negative response to the request of the
connection:

Initiate.Rsp(–)
Error Type

Error Class= INITIATE
Error Code= OTHER

ACCEPT Accept to establish a connection and send a positive
response:

Initiate.Rsp(+)

CONCL_PASSIV Send positive response to conclude the connection:

Conclude.Rsp(+)

CONNECTING Request a connection to the remote communication
partner:

Initiate.Req

ABORT_1 Request to abort communication:

Abort.Req

CHECKING_2 Check if the connection can be established:

Check if the application association can be established

ABORT_2 Request to abort communication:

Abort.Req

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

61131-5  IEC:2000(E) – 97 –

CLOSING Request to conclude the connection:

Conclude.Req

CONCLUDING Send positive response to conclude the connection:

Conclude.Rsp(+)

A.5 Implementation specific features and parameters

Implementation specific features and parameters defined in this annex and the most relevant
subclause for each are listed in the following table.

Table A.30 – Implementation specific features and parameters

Subclause Implementation specific features and parameters

A.6.1 Mapping of the PC system onto the VMD of ISO/IEC 9506-5

A.6.2 The maximum length permitted for data of data type STRING when communicating in the abstract
syntax of ISO/IEC 9506-5

A.6.4 Means to create additional Program Invocation objects

A.6.5 Means to create additional Domain objects

A.7 If communication channels established using the FB CONNECT are reusable or not

A.7.6 The value of the Priority attribute of the MMS Event Condition object

A.7.6 The value of the Notification Lost attribute of the MMS Event Enrolment object

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

– 98 – 61131-5  IEC:2000(E)

Annex B
(normative)

PC behavior using ISO/IEC 9506-2

B.1 PC communications mapping to MMS

This annex specifies the behavior of a PC when it is communicating in the abstract syntax
defined by ISO/IEC 9506-2.

ISO/IEC 9506-1/2 specifies the model of a VMD and specifies how services are provided by a
VMD. ISO/IEC 9505-5 extends the VMD for a PC e.g. by adding the concept of I/O state. It also
extends the services provided by a PC to specify the behavior of a PC.

The general approach is that the PC behaves as if it is communicating in the abstract syntax
defined in ISO/IEC 9506-5, with defaults applied where the services has been extended in
ISO/IEC 9506-5.

For the CreateProgramInvocation Service, the following defaults shall be used:

Table B.1 – CreateProgramInvocation service defaults

PC language element
of IEC 61131-3

Independent attribute Program Invocation Reference attribute

Configuration TRUE

Resource FALSE Identifier of the Program Invocation of the configuration

Others TRUE

For the following services, the PC shall behave according to the service extensions defined in
ISO/IEC 9506-5 with the value of the I/O State used in the following table, including the service
procedure extensions related to the Independent and Program Invocation Reference attributes.

Table B.2 – Program Invocation service defaults for I/O State parameter

MMS service I/O State value

Start 0 – Controlled

Resume 0 – Controlled

Stop 3 – Implementer State

Kill 3 – Implementer State

The service procedure extensions defined for the GetProgramInvocationAttributes service shall
not be used.

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

61131-5  IEC:2000(E) – 99 –

B.2 Implementation specific features and parameters

Implementation specific features and parameters used in this annex of IEC 61131-5 and the
most relevant subclause for each are listed in the following table.

Table B.3 – Implementation specific features and parameters

Subclause Implementation specific features and parameters

A.6.1 Mapping of the PC system onto the VMD of ISO/IEC 9506-1

A.6.2 The maximum length permitted for data of data type STRING when communicating in the abstract
syntax of ISO/IEC 9506-1

A.6.4 Means to create additional Program Invocation objects

A.6.5 Means to create additional Domain objects

A.7 If communication channels established using the FB CONNECT are reusable or not

A.7.6 The value of the Priority attribute of the MMS Event Condition object

A.7.6 The value of the Notification Lost attribute of the MMS Event Enrolment object

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

--``,`,`,,,``````,,``,,``,,,,`,-`-`,,`,,`,`,,`---

Standards Survey

The IEC would like to offer you the best quality standards possible. To make sure that we
continue to meet your needs, your feedback is essential. Would you please take a minute
to answer the questions overleaf and fax them to us at +41 22 919 03 00 or mail them to
the address below. Thank you!

Customer Service Centre (CSC)

International Electrotechnical Commission
3, rue de Varembé
1211 Genève 20
Switzerland

or

Fax to: IEC/CSC at +41 22 919 03 00

Thank you for your contribution to the standards-making process.

Non affrancare
No stamp required

Nicht frankieren
Ne pas affranchir

 A Prioritaire

RÉPONSE PAYÉE

SUISSE

Customer Service Centre (CSC)
International Electrotechnical Commission
3, rue de Varembé
1211 GENEVA 20
Switzerland

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Q1 Please report on ONE STANDARD and
ONE STANDARD ONLY . Enter the exact
number of the standard: (e.g. 60601-1-1)

...

Q2 Please tell us in what capacity(ies) you
bought the standard (tick all that apply).
I am the/a:

purchasing agent R

librarian R

researcher R

design engineer R

safety engineer R

testing engineer R

marketing specialist R

other...

Q3 I work for/in/as a:
(tick all that apply)

manufacturing R

consultant R

government R

test/certification facility R

public utility R

education R

military R

other...

Q4 This standard will be used for:
(tick all that apply)

general reference R

product research R

product design/development R

specifications R

tenders R

quality assessment R

certification R

technical documentation R

thesis R

manufacturing R

other...

Q5 This standard meets my needs:
(tick one)

not at all R

nearly R

fairly well R

exactly R

Q6 If you ticked NOT AT ALL in Question 5
the reason is: (tick all that apply)

standard is out of date R

standard is incomplete R

standard is too academic R

standard is too superficial R

title is misleading R

I made the wrong choice R

other ..

Q7 Please assess the standard in the
following categories, using
the numbers:
(1) unacceptable,
(2) below average,
(3) average,
(4) above average,
(5) exceptional,
(6) not applicable

timeliness ...
quality of writing....................................
technical contents.................................
logic of arrangement of contents
tables, charts, graphs, figures
other ..

Q8 I read/use the: (tick one)

French text only R

English text only R

both English and French texts R

Q9 Please share any comment on any
aspect of the IEC that you would like
us to know:

..

..

..

..

..

..

..

..

..

..

..

..

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

 ISBN 2-8318-5510-1

��������	
���
��
ICS 25.040.40; 35.240.50

Typeset and printed by the IEC Central Office
GENEVA, SWITZERLAND

Copyright International Electrotechnical Commission
Provided by IHS under license with IEC Licensee=Technip Abu Dabhi/5931917101

Not for Resale, 02/12/2006 07:02:40 MSTNo reproduction or networking permitted without license from IHS

-
-
`
`
,
`
,
`
,
,
,
`
`
`
`
`
`
,
,
`
`
,
,
`
`
,
,
,
,
`
,
-
`
-
`
,
,
`
,
,
`
,
`
,
,
`
-
-
-

